UNIVERSITA DEGLI STUDI DI PISA

Facolta di Ingegneria

Corso di Laurea in Ingegneria Informatica

Code generation starting from statecharts specified in
UML

Tiziana Allegrini

aa 2001/2002

1. INTRODUCTION. ceuueieeeeenecereersecessssessersssssssssssssssssasssssssssssssssssssssessssssssossssssssssnnnsses 5

2. UML STANDARD ...cuuuneiiesssnercsssneessssssnecsssssesssssssssssssssessssassssessassasssssssssssssssssssanes 6
2000 UML....oooooeee e 6
2.2, Modeling diagrams in UMLc....ccccoiiimmiiiiiiiiiiieeeeie e 7

221 0L Y o2 T PP U RO PPPUPRPRPT 8
222 ClBSS..c ittt e e aae e s 12
223 Packages € ODJECESccuieiieiie et et 16
224 SEOUENCE ...ttt ettt ettt n 18
225 (000 F='oT0] (o] o 1SS 19
2.2.6 S | =SOSR 20
227 ACTIVITY ettt ettt b e et enne e 28
2.2.8 Component € deploYMENTcoiieiireiieie e 31

3. ARGOUML..cccuuiiiieiininennssnnnssenssssssssssssssassssssssssssssssssssssssssssssssssssssassssssssssassssses 33
3.1, ArgOUML dia@Uramscccccoooeeeiiiiiiiiiiieeeie e 35
3.2, Working with A¥GOUMLcccoooiiiiiiiiiiiie e 37

321 ArgoUML MENU BNco ittt 38
3.2.2 The Navigation Panecoocciiee ettt 38
3.2.3 ArgoUML Editing Pane..........ccoee i 39
3.24 ArgoUML "TODO" Pane.........cuveiiiiiiiiieiiee e 40
3.25 ArgoUML DetallSPane.........cccveviiiiiiii et 40
3.2.6 Creatingaclassin ArgOUMLc.coooovciiei i, 42
3.2.7 Creating statecharts in ArgOUMLccveviiiiieie e, 43

4. FROM STATECHART TO JAVA CODE.....uuueeiiiisneriisssneiccssneesssssssnssssseessssssessssnsee 45

4.1. Design Pattern and polimorfiSmi...............ccociieeiiiiiiiiiiiiiieiiiee e 46
411 SEBEE PALIEIN ...t 47
4.2, State pattern for code ENEFALION................c.....ccccuveieeiiiiiiiiiieeeiiiieeeeiieean 52

5. ARGOUML CODE ORGANIZATION.....ccccorvsuneeeerecesssssnsseesecssssssssssessssssssssssssssssessane 58

5.1, General architeCtureooooei e 58
51.1 PACKAgES......ooe e e 58
512 ATFGOUML COME.... ettt e e e e e eans 61
5.1.3 ArgoUML mMain WINCOWccuviieiiiiieie ittt 63
514 IVTBINUL ...ttt e e e sab e e e e ee 65
515 NAVIGALON PANEcueeiieieiieeiee ettt et en e sreeseeas 66
516 o] (o RO SUSRPRRRR 67
51.7 DEtAIS PANE.....coeeeieeeeeie e e 70

6. ARGOUML LIBRARIEScccocvvvurerieressssssneeesiesssans 73

0.1, GEF ..o 73
6.1.1 CaraCIEISHICS ..ee it 73
6.1.2 I < PR SRPPR 74
6.1.3 EITON <. e 75

6.1.4 S ettt 76

6.1.5 SEIECIONS. ..ot n 76
6.1.6 [@0101007= 10 LSS 78
6.1.7 IMIOOES ...ttt ettt e et e snan e e nae e e ssseeeneeeansenennnenans 78
0.2, INSUML.........ooovoiiiiiie e 79
6.2.1 UML Metamodel implementation.............ccceeviicieeevieee e 79
6.2.2 PaCKages SLIUCLUNE.........coo it e st ee e 80
6.2.3 FOUNDELTION ... 80
6.2.4 Behavioural EIemMents.........o.ceviiiiiiiieeee e 81
6.2.5 Model ManagemMENt...........c.ueieiiieie e e e srre e s ee e 82
6.2.6 AP DESCIIPLION.eiitieiieiteeie ettt s ennee 83
6.2.7 Accessing and modifying metaattribUtes............ccocevcerieriiinie s 86
6.2.8 Accessing and modifying MetaassoCiations...........covverveeieenieesieeniens 87
6.2.9 NSUML refleCtivVe APccceee ettt 89
2 (O T @ 1 1= g [o =SS 91
CODE GENERATION ...cciiiiuuneeeiiecissssssseessesssssssssssssssesssssssssssssssssssssassssssssssssssssns 92
7. IMPIementQliONc...ococuiiiiiiiiiiie e 92
711 Classe GENEIALON.......ccieee ittt s 92
7.1.2 Classe GENEIAtOrJAVAL.uuiieee ittt 93
7.1.3 GENEratorDISPIAYcccvvee et 93
714 (€T 0T (0] = =TSP 93
715 ClasS PIrOPENTIES........eeiiieieeeie ettt sttt seee e 96
7.1.6 State Maching ProPerties.ccuveieeiierieeiie e 97
7.2. Generated code renderingccccoooviiiiiiiiiiiiiiiiie e 100
7.2.1 Classe TabMOCE Target........oeeeeiiiieie e 101
7.2.2 Classe TADTEXL....cueeeeee e e 102
7.2.3 Classe TADSICSEALE........cciieeiiiiie e 102
7.3. Show generate code in “Source state” tab Strip..................ccccc.covviiieeenn.. 104
7.4. New menu: Generation StateCharts.........................c..cccciiiiieiiiiieieeeeeen, 106
74.1 Class ProjECtBIOWSETcccvveeeiiiee e cciiee e s e estaee et 106
74.2 ClasS UMLACHON.cuvieieecie et tae e snee e e 108
7.4.3 ClaSS ACHIONS.....ceciuiieiiee ettt eee e e aee e ssae e s nraeesneeeannas 108
74.4 Class ACtioNGENSIALEFTI@........eeeiiee e 109
7.4.5 Class ClassStateGenerationDial 0g.........cccoeereereeanieenieesee e 110
7.4.6 Show the call stack from the menu..........cccoecoeeviie e, 111
CONCLUSIONS ..cociuueeiisssnneeccssnserssssssesesssssesssssssssssssssesssssssssssssssassssssssssssassssssanss 115
THANKS ceetiiiitetiiiitetissnttieisinsetesssssttesssssessssssstsesssssesssssssssesssssassssssssssssssssssssanss 116

1. Introduction

Far from 1980 many reserch groups developed some methodologies and notations for

OO0 analisys and design. This situation needed a standard language and notation.

About 1994, when Jacobson arrived to the Rational society, within Booch and

Rambaugh, they developed a unified language for design software, UML.

Many society were interested in UML and they built their project on UML notation,

also developed their own CA SE tool.
OMG in 1998, made the standard of UML in hisfirst version.

All CASE tools had to support the whole design process of software development and

they required some automatic function of code generation.
ArgoUML manage the automatic code generation based only on class diagrams.

8In this work we make ArgoUML be able to generating code from class diagrams and
statecharts. Code generated restricts and controls behaviuor of the object to which the
statechart is associated. We based this code generation on the pattern State architecture,

such a riusable and modul ar software pattern.

2. UML standard

2.1. UML

During the 1980's a number of OOA&D process methodologies and notations were
developed by different research teams. It became clear there were many common
themes and, during the 1990's, a unified approach for OOA& D notation was devel oped
under the auspices of the Object Management Group. This standard became known as
the Unified Modeling Language (UML), and is now the standard language for

communicating OO concepts.

The heart of object-oriented problem solving is the construction of a model. The model
abstracts the essential details of the underlying problem from its usually complicated
real world. Several modeling tools are wrapped under the heading of the UML, which

stands for Unified Modeling Language.

The Unified Modeling Language (UML) is a language for specifying, visualizing,
constructing, and documenting the artifacts of software systems, as well as for business
modeling and other non-software systems. The UML represents a collection of the best
engineering practices that have proven successful in the modeling of large and complex

systems.

The UML is applicable to object-oriented problem solving. Anyone interested in
learning UML must be familiar with the underlying tenet of object-oriented problem
solving -- it all begins with the construction of amodel. A model is an abstraction of the

underlying problem. The domain is the actual world from which the problem comes.

Models consist of objects that interact by sending each other messages. Think of an
object as "dive." Objects have things they know (attributes) and things they can do

(behaviors or operations). The values of an object’s attributes determine its state.

Classes are the "blueprints’ for objects. A class wraps attributes (data) and behaviors

(methods or functions) into a single distinct entity. Objects are instances of classes.

At the center of the UML are its eight different kinds of modeling diagrams, which we

describe here.
2.2. Modeling diagrams in UML
In terms of the views of amodel, the UML defines the following graphical diagrams:

* use case diagram
* class diagram

* behavior diagrams:

« statechart diagram

* activity diagram

« interaction diagrams:
* sequence diagram

« collaboration diagram

* implementation diagrams:

» component diagram

* deployment diagram

Although other names are sometimes given to these diagrams, this list constitutes the

canonical diagram names.

These diagrams provide multiple perspectives of the system under anaysis or
development. The underlying model integrates these perspectives so that a
selfconsistent system can be analyzed and built. These diagrams, along with supporting
documentation, are the primary artifacts that a modeler sees, although the UML and

supporting tools will provide for a number of derivative views.

2.2.1 Use case

Use case diagrams show actors and use cases together with their relationships. The use
cases represent functionality of a system or a classifier, like a subsystem or a class, as

manifested to external interactors with the system or the classifier.

Use case diagrams describe what a system does from the standpoint of an externa

bserver. The emphasisis on what a system does rather than how.

A use case diagram is a graph of actors, a set of use cases, possibly some interfaces, and
the relationshi ps between these elements. The rel ationships are associations between the
actors and the use cases, generalizations between the actors, and generalizations,
extends, and includes among the use cases. The use cases may optionally be enclosed

by arectangle that represents the boundary of the containing system or classifier.

A use case isakind of classifier representing a coherent unit of functionality provided

by a system, a subsystem, or a class as manifested by sequences of messages

exchanged among the system (subsystem, class) and one or more outside interactors

(called actors) together with actions performed by the system (subsystem, class).

An extension point iS a reference to one location within a use case at which action
sequences from other use cases may be inserted. Each extension point has a unique
name within a use case, and a description of the location within the behavior of the use

case.

An actor defines a coherent set of roles that users of an entity can play when interacting
with the entity. An actor may be considered to play a separate role with regard to each

use case with which it communicates.

The standard stereotype icon for an actor is a “stick man” figure with the name of the

actor below the figure.

? Y
A

| i
- "\-\..-"I

7

Allore Specifico Allore

ASS0CIAZI0MES

ral ; N
|\h Caso d'uso |
A

e

o~ K,
{ Caso duso -s-pe-urll:ni:]
I\"\.

e
— —

n
£y

.-.' L
=<etands=5 Mwmsincluda==
L
x

= . T o B

rd Caso d'uso ™ o ™y
b spacalizzalo ; .,
At F o

4]
o
[1]
=]
ﬂ-
E
o
=
B
c
@
a

e — —— A

- ——

o

fl‘u'lé]l"l[Elir'l ATML Y

e _--f"v::fx Bank Engineer
x\x
o =
I'H._ H‘"‘-.\,\H I.‘_'\-\.
.-'
e TR T .
=3 —.-‘1’:; Uise ATh H;u k

Customer \\

Local Eanklﬂﬁlciat

iy
Canfral Compuler

There are several standard relationships among use cases or between actors and use

cases.

* Association — The participation of an actor in a use case; that is, instances of the actor

and instances of the use case communicate with each other. This is the only relationship

between actors and use cases.

* Extend — An extend relationship from use case A to use case B indicates that an

instance of use case B may be augmented (subject to specific conditions specified in the
extension) by the behavior specified by A. The behavior is inserted at the location

defined by the extension point in B, which is referenced by the extend relationship.

* Generalization — A generalization from use case C to use case D indicates that C is a

specialization of D.

10

¢ Include — An include relationship from use case E to use case F indicates that an

instance of the use case E will also contain the behavior as specified by F. The behavior

is included at the location which defined in E.

Customer

Ceantral Compuler

?IE Qﬂnlain AT_I';Q
-\-H‘-H‘

=sireludec ¢ “wednchidess
v N
neEngra R I/"” oot Local Bank, Offcial
Mantain Equipmant /I Reload ATM
— —
—— i
J “-}(Use ATM
Emm 44|n|:u:|-u"4'-"- s

{ csinduseed,

<wnmrar.-.r Eaah\% £

!
I'\.

: -
v e cinchida= 3

' i L
<I;E||:-DS|I: Ca-s_a\'. s 1“)

_—

Caniral Compiier

(Audit

11

2.2.2 Class

A Class diagram gives an overview of a system by showing its classes and the
relationships among them. Class diagrams are static -- they display what interacts but

not what happens when they do interact.

e W G Mol s

irediiis AR AT

metodi

3 55 0HA A DT
nawigabil o

tgeneralizgariong

Classel ermenin L Iz d bervi L lgssedberivi

UML class notation is a rectangle divided into three parts. class name, attributes, and
operations. Names of abstract classes, such as Payment, are in italics. Relationships

between classes are the connecting links.

Our class diagram has three kinds of relationships:

association -- a relationship between instances of the two classes. There is an
associ ation between two classes if an instance of one class must know about the other in

order to perform its work. In a diagram, an association is a link connecting two classes.

12

aggregation -- an association in which one class belongs to a collection. An
aggregation has a diamond end pointing to the part containing the whole. In our

diagram, Order has a collection of OrderDetails.

generalization -- an inheritance link indicating one class is a superclass of the other. A
generalization has a triangle pointing to the superclass. Payment is a superclass of Cash,

Check, and Credit.

An association has two ends. An end may have a role name to clarify the nature of the

association. For example, an OrderDetail is aline item of each Order.

A navigability arrow on an association shows which direction the association can be
traversed or queried. The arrow aso lets you know who "owns' the association’s
implementation; in this case, OrderDetail has an Item. Associations with no navigability

arrows are bi-directional.

The multiplicity of an association end is the number of possible instances of the class
associated with a single instance of the other end. Multiplicities are single numbers or
ranges of numbers. In our example, there can be only one Customer for each Order, but

a Customer can have any number of Orders.

This table gives the most common multiplicities.

Molteplicita Significato

0..1 Zero o una istanza

0..* o * Nessun limite al numero di istanze

1 Esattamente una

1..* Almeno una

13

Weomne L lasseAstrafi

A momen it : lpo

+ mememend oo tipo ftom

Strings in the attribute compartment are used to show attributes in classes. A similar
syntax is used to specify qualifiers, template parameters, operation parameters, and so

on (some of these omit certain terms).

An attribute is shown as atext string that can be parsed into the various properties of an
attribute model element. An operation is a service that an instance of the class may be
requested to perform. It has a name and alist of arguments. An operation is shown as a

text string that can be parsed into the various properties of an operation model element.

Association - Binary associations are shown as lines connecting two classifier symbols.
The lines may have a variety of adornments to show their properties. Ternary and
higher-order associations are shown as diamonds connected to class symbols by lines. A
binary association is an association among exactly two classifiers (including the

possibility of an association from a classifier to itself).

L Fasse Llsee

i bag i aSsacladona

inelis=d

Dependency — A dependency indicates a semantic relationship between two model
elements (or two sets of model elements). It relates the model elements themselves and

does not require a set of instances for its meaning. It indicates a situation in which a

14

change to the target element may require a change to the source element in the
dependency. A dependency is shown as a dashed arrow between two model elements.
The model element at the tail of the arrow (the client) depends on the model element at
the arrowhead (the supplier). The arrow may be labeled with an optional stereotype and

an optional individual name.

Classe A Classe B

-

altrikn
Dipendenza di B da &

nclinls

Composition - Composite aggregation is a strong form of aggregation, which requires
that a part instance be included in a most one composite at a time and that the
composite object has sole responsibility for the disposition of its parts. The multiplicity
of the aggregate end may not exceed one (it is unshared). See Section 3.43,

“Association End,” on page 3-71 for further details.

Composition may be shown by a solid filled diamond as an association end adornment.
Alternately, UML provides a graphically-nested form that is more convenient for

showing composition in many cases.

Comtenitore Pare

.

rixaka

Generalization - Generalization is the taxonomic relationship between a more general
element (the parent) and a more specific element (the child) that is fully consistent with
the first element and that adds additional information. It is used for classes, packages,
use cases, and other elements.

15

Generalization is shown as a solid-line path from the child (the more specific element,
such as a subclass) to the parent (the more general element, such as a superclass), with a

large hollow triangle at the end of the path where it meets the more general element.
Clas=e Base

-
ks

generalizzaiions

ClasseDervan L e leranm L lpssedderivam

Clhissze Clisse

— tm
FEETHE P

a4 | [T

2.2.3 Packages e Objects

A package is a collection of logically related UML elements. The diagram below is a

business model in which the classes are grouped into packages.

16

Packages appear as rectangles with small tabs at the top. The package name is on the tab
or inside the rectangle. The dotted arrows are dependencies. One package depends on

another if changesin the other could possibly force changesin the first.

Object diagrams are specia kinds of class diagrams, showing instances instead of
classes. They are useful for explaining small pieces with complicated relationships,

especially recursive relationships.

MNome package

— _

Mo panckage dipendenza 4 Morme packnge

The object diagram below instantiates the class diagram, replacing it by a concrete

example.

Each rectangle in the diagram corresponds to a single instance. Instance names are
underlined in UML diagrams. Class or instance names may be omitted from object

diagrams as long as the diagram meaning is still clear.

An object diagram is a graph of instances, including objects and data values. A static
object diagram is an instance of a class diagram; it shows a snapshot of the detailed
state of a system at a point in time. The use of object diagrams is fairly limited, mainly

to show examples of data structures.

17

humaistancs : nomeCEiEg Marmmbalanca : nomed s

relazona

2.2.4 Sequence

Class and object diagrams are static model views. Interaction diagrams are dynamic.

They describe how objects collaborate.

A sequence diagram is an interaction diagram that details how operations are carried out
-- what messages are sent and when. Sequence diagrams are organized according to
time. The time progresses as you go down the page. The objects involved in the
operation are listed from left to right according to when they take part in the message
sequence. Below is a sequence diagram for making a hotel reservation. The object

initiating the sequence of messages is a Reservation window.

Chrpetti partecipanti

latanza : Clasae

] i : i lass ‘

Messagaio |

Loy
i Elaborazione

| ntermsa

Messaggio 2

4

—_

| | 1 Fine esecuzione

>

1 Fine esecuziong

18

Each vertical dotted line is a lifeline, representing the time that an object exists. Each
arrow is a message call. An arrow goes from the sender to the top of the activation bar
of the message on the receiver’s lifeline. The activation bar represents the duration of

execution of the message.

A sequence diagram presents an Interaction, which is a set of Messages between
ClassifierRoles within a Collaboration, or an InteractionlnstanceSet, which is a set of
Stimuli between Instances within a CollaborationinstanceSet to effect a desired

operation or result.

2.2.5 Collaboration

A collaboration diagram presents either a Collaboration, which contains a set of rolesto
be played by Instances, as well as their required relationships given in a particular
context, or it presents a Collaborationl nstanceSet with a collection of Instances and their
relationships. The diagram may also present an Interaction (InteractionlnstanceSet),
which defines a set of Messages (Stimuli) specifying the interaction between the

Instances playing the roles within a Collaboration to achieve the desired result.

Collaboration diagrams are also interaction diagrams. They convey the same
information as sequence diagrams, but they focus on object roles instead of the times
that messages are sent. In a sequence diagram, object roles are the vertices and

messages are the connecting links.

19

S PLETIRGT IR ER L 1
A P s | = S Isinmen = Ukasse

bt . »
s RegMumber | essagp
,
R

e
R
RS

Istnmza ; Classe

The object-role rectangles are labeled with either class or object names (or both). Class

names are preceded by colons (:).

Each message in a collaboration diagram has a sequence number. The top-level message
is numbered 1. Messages at the same level (sent during the same call) have the same

decimal prefix but suffixes of 1, 2, etc. according to when they occur.

2.2.6 State

Objects have behaviors and state. The state of an object depends on its current activity
or condition. A statechart diagram shows the possible states of the object and the

transitions that cause a change in state.

Statechart diagrams represent the behavior of entities capable of dynamic behavior by
specifying its response to the receipt of event instances. Typically, it is used for
describing the behavior of class instances, but statecharts may also describe the

behavior of other entities such as use-cases, actors, subsystems, operations, or methods.

A statechart diagram is a graph that represents a state machine. States and various other
types of vertices (pseudostates) in the state machine graph are rendered by appropriate
state and pseudostate symbols, while transitions are generally rendered by directed arcs
that inter-connect them. States may also contain subdiagrams by physical containment

or tiling. Note that every state machine has a top state that contains all the other
20

elements of the entire state machine. The graphical rendering of this top state is

optional.

A statechart diagram maps into a StateMachine. That StateMachine may be owned by
an instance of a model element capable of dynamic behavior, such as classifier or a
behavioral feature, which provides the context for that state machine. Different contexts

may apply different semantic constraints on the state machine.

Our example diagram models the login part of an online banking system. Logging in
consists of entering a valid social security number and personal id number, then

submitting the information for validation.

Logging in can be factored into four non-overlapping states: Getting SSN, Getting PIN,
Validating, and Rejecting. From each state comes a complete set of transitions that

determine the subsequent state.

oursor o S

ot - x -
Rapclin: & o~ i " o i
! d RtryCioar SSH Gathng S5 E"r:.-:h::
A I i
| -
._" " -\ -". '.\. -'.
Canced Gt 1 b L/
~ -~
-'.-. '-.
o -
4.; [not vahid | aubmi __.-""'
'.x._f. Chsplay e=mor -

-"'\ MARAATA .-__.-"
-

.--_.-'
|.la||:._l| EF
shari o
IrarsArion | i v |
Le | Getirg PIN | Preaskey

Walidaling] |
Skl | Displavdok

21

States are rounded rectangles. Transitions are arrows from one state to another. Events
or conditions that trigger transitions are written beside the arrows. Our diagram has two

self-transition, one on Getting SSN and another on Getting PIN.

The initial state (black circle) is a dummy to start the action. Final states are also

dummy states that terminate the action.

The action that occurs as a result of an event or condition is expressed in the form
/action. While in its Validating state, the object does not wait for an outside event to
trigger atransition. Instead, it performs an activity. The result of that activity determines

its subsequent state.
State

A state is a condition during the life of an object or an interaction during which it
satisfies some condition, performs some action, or waits for some event. A composite
state is a state that, in contrast to a simple state, has a graphical decomposition.
Conceptualy, an object remains in a state for an interval of time. However, the
semantics allow for modeling “flow-through” states that are instantaneous, as well as

transitions that are not instantaneous.

i HomeSiato ‘\|

Atirata interne

A state is shown as a rectangle with rounded corners. Optionally, it may have an

attached name tab. The name tab is a rectangle, usually resting on the outside of the top

22

side of a state and it contains the name of that state. It is normally used to keep the name

of acomposite state that has concurrent regions, but may be used in other cases aswell .

A state may be optionally subdivided into multiple compartments separated from each

other by a horizontal line. They are as follows:

Name compartment
This compartment holds the (optional) name of the state as a string. States without

names are anonymous and are al distinct. It is undesirable to show the same named
state twice in the same diagram, as confusion may ensue. Name compartments should

not be used if aname tab is used and vice versa

Internal transitions compartment
This compartment holds a list of internal actions or activities that are performed while

the element isin the state. The action label identifies the circumstances under which the
action specified by the action expression will be invoked. The action expression may
use any attributes and links that are in the scope of the owning entity. For list items

where the action expression is empty, the backslash separator is optional.

Initial State
The initial state is a pseudostate representing the default state of a state machine (or

composite state) when it is created. It is the state from which any initial transition is
made. As a consequence it is not permissible to have incoming transitions. An initia

state is represented on the diagram as a solid disc.

Final State
If atransition reaches afinal state, it implies completion of the activity associated with

that composite state, or at the top level, of the complete state machine. In the UML

metamodel FinalStateisachild of State. Completion at the top level implies termination

23

(i.e. destruction) of the owning object instance. The representation of afinal state on the

diagram isacircle with asmall disc at its center.

Composite state
A composite state is decomposed into two or more concurrent substates (called regions)

or into mutually exclusive digoint substates. A given state may only be refined in one
of these two ways. Naturally, any substate of a composite state can also be a composite

state of either type.

A composite state is a state that contains other states (known as sub-states), allowing
hierarchical state machines to be constructed. Sub-states are placed within a composite
machine by placing them entirely within the composite state when creating them for the

first timein the editing pane.

f Stato composto

Sy PP
Stato interno ’(7 \ Siato interno]
A ..

Transition
A transition is a directed relation between a source state (or composite state) and

destination state (or composite state). Within the UML metamodel, Transition is a sub-

class of Model El enent .

A simpletransition is arelationship between two states indicating that an instance in the
first state will enter the second state and perform specific actions when a specified event

occurs provided that certain specified conditions are satisfied. On such a change of

24

state, the transition is said to “fire.” The trigger for a transition is the occurrence of the
event labeling the transition. The event may have parameters, which are accessible by
the actions specified on the transition as well as in the corresponding exit and entry
actions associated with the source and target states respectively. Events are processed
one at a time. If an event does not trigger any transition, it is discarded. If it can trigger
more than one transition within the same sequential region; that is, not in different
concurrent regions, only one will fire. If these conflicting transitions are of the same

priority, an arbitrary one is selected and triggered.

A transition is shown as a solid line originating from the source state and terminated by
an arrow on the target state. It may be labeled by a transition string that has the

following general format:

N

event [guard] | action signal

The event-signature describes an event with its arguments:

event-name ‘(" comma-separated-parameter-list *)’

The guard-condition is a Boolean expression written in terms of parameters of the
triggering event and attributes and links of the object that owns the state machine. The
guard condition may also involve tests of concurrent states of the current machine, or
explicitly designated states of some reachable object (for example, “in Statel” or “not
in State2”). State names may be fully qualified by the nested states that contain them,
yielding pathnames of the form “Statel::State2::State3.” This may be used in case same

state name occurs in different composite state regions of the overall machine.

The action-expression is executed if and when the transition fires. It may be written in

terms of operations, attributes, and links of the owning object and the parameters of the

25

triggering event, or any other features visible in its scope. The corresponding action
must be executed entirely before any other actions are considered. This model of
execution is referred to as run-to-completion semantics. The action expression may be
an action sequence comprising a number of distinct actions including actions that
explicitly generate events, such as sending signals or invoking operations. The details of

this expression are dependent on the action language chosen for the model.

Event
An event is a noteworthy occurrence. For practical purposes in state diagrams, it is an

occurrence that may trigger a state transition. Events may be of severa kinds (not

necessarily mutually exclusive).

An event is an observable occurrence. In the UML metamodel it is a child of
Model El enent . There are a number of different types of event that are children of

event within the UML metamodel.

Si gnal Event . Associated with a signal, this event is caused by the signal

being raised.

Cal | Event . Associated with an operation of a class, this event is caused by a
call to the given operation. The expected effect is that the steps of the operation

will be executed.

Ti meEvent . An event cause by expiration of atiming deadline.

ChangeEvent . An event caused by a particular expression (of attributes and

associations) becoming true.

An action is represented by its name.

26

A designated condition becoming true (described by a Boolean expression) resultsin a
change event instance. The event occurs whenever the value of the expression changes
from false to true. Note that this is different from a guard condition. A guard condition
is evaluated once whenever its event fires. If it is false, then the transition does not

occur and the event is lost.

The receipt of an explicit signal from one object to another results in a signal event

instance. It is denoted by the signature of the event as atrigger on atransition.

The receipt of acall for an operation implemented as a transition by an object represents

acall event instance.

The passage of a designated period of time after a designated event (often the entry of

the current state) or the occurrence of a given date/time is a TimeEvent.

The event declaration has scope within the package it appears in and may be used in
state diagrams for classes that have visibility inside the package. An event is not local to

asingle class.

Guard
A guard is associated with a transition. At the time an event is dispatched, the guard is

evaluated, and if false, its transition is disabled. In the UML metamodel, Guard is a

child of Mbdel El enent .

Action
An action specifies an activity to do and it is the abstraction of a computational

procedure: it may change the state of an object. The action is “atomic” and it may

executed only due to a transition.

27

There are several types of actions. Creat eActi on or DestroyActi on, that
respectively creates and destroyes an object, and Cal | Acti on, SendActi on and

Ret ur nAct i on that calls, send and return some parameters.

2.2.7 Activity

An activity diagram is essentialy a fancy flowchart. Activity diagrams and statechart
diagrams are related. While a statechart diagram focuses attention on an object
undergoing a process (or on a process as an object), an activity diagram focuses on the
flow of activities involved in a single process. The activity diagram shows the how

those activities depend on one another.
For our example, we used the following process.
"Withdraw money from a bank account through an ATM."

The three involved classes (people, etc.) of the activity are Customer, ATM, and Bank.
The process begins at the black start circle at the top and ends at the concentric

white/black stop circles at the bottom. The activities are rounded rectangles.

An activity graph is a variation of a state machine in which the states represent the
performance of actions or subactivities and the transitions are triggered by the
completion of the actions or subactivities. It represents a state machine of a procedure

itself.

28

Customer ATM machine Bank

i

[Insert card J

I
l Enter pin] — Auitharize

LY

[walid PN L | mvvalid BN |

=
[Enter amaount _]

. 3'[Check account balance]

[balance==anmount | __J(
= -
_ = Debit acoount J
Take money ‘L
]
_%>< | Balance<amount |

L
[Show balance]

s

[(o]

Take card

™y

Activity diagrams can be divided into object swimlanes that determine which object is
responsible for which activity. A single transition comes out of each activity,

connecting it to the next activity.
29

A transition may branch into two or more mutually exclusive transitions. Guard
expressions (inside []) label the transitions coming out of a branch. A branch and its
subsequent merge marking the end of the branch appear in the diagram as hollow

diamonds.

A transition may fork into two or more parallel activities. The fork and the subsequent

join of the threads coming out of the fork appear in the diagram as solid bars.

i N
Allivita
L - -
{:ﬁ
s V N i V |
Attivita 1 Attivita 2
L™ - L =
[Attivita 0
fork —

[Attivita 1] [Attiata 2 }

“

0N ——

l

[Attivita

L ’l

30

2.2.8 Component e deployment

A component is a code module. Component diagrams are physical analogs of class
diagram. Deployment diagrams show the physical configurations of software and

hardware.

The following deployment diagram shows the relationships among software and

hardware components involved in real estate transactions.

A component diagram shows the dependencies among software components, including
the classifiers that specify them (for example, implementation classes) and the artifacts
that implement them; such as, source code files, binary code files, executable files,

scripts.

A component diagram has only atype form, not an instance form. To show component
instances, use a deployment diagram (possibly a degenerate one without nodes). A
component diagram is a graph of components connected by dependency relationships.
Components may aso be connected to components by physical containment

representing composition relationships.

I | | server [Litrrary

| | Program |

The physical hardware is made up of nodes. Each component belongs on a node.

Components are shown as rectangles with two tabs at the upper |eft.

31

joa:Lser PO

Joabdain
] Chent Program

t[Ed”E-FEQ -.--__.-".-"

|_I_|] .
L

Deployment diagrams show the configuration of run-time processing elements and the
software components, processes, and objects that execute on them. Software component
instances represent run-time manifestations of software code units. Components that do
not exist as run-time entities (because they have been compiled away) do not appear on

these diagrams, they should be shown on component diagrams.

A deployment diagram is a graph of nodes connected by communication associations.
Nodes may contain component instances. This indicates that the component runs or
executes on the node. Components may contain instances of classifiers, which indicates
that the instance resides on the component. Components are connected to other
components by dashed-arrow dependencies (possibly through interfaces). This indicates
that one component uses the services of another component. A stereotype may be used

to indicate the precise dependency, if needed.

32

3. ArgoUML

ArgoUML was conceived as a tool and environment for use in the analysis and design
of object-oriented software systems. In this sense it is similar to many of the
commercial CASE tools that are sold as tools for modeling software systems.

ArgoUML has a number of very important distinctions from many of these tools.

ArgoUML is a powerful yet easy-to-use interactive, graphical software design
environment that supports the design, development and documentation of object-
oriented software applications. ArgoUML takes part to the family of software

applications called Computer Aided Software Engineering (CASE) tools.

ArgoUML is based directly on the UML 1.3 specification. In fact, a large part of
ArgoUML was generated automatically from the UML specification. ArgoUML is (to
the best of our knowledge) the only tool that implements the UML meta-model exactly
as specified. In contrast, current commercia tools use tools use basically the same

internal representation of the design that they used in previous versions.

The users of ArgoUML are software designers & architects, software developers,
business analysts, systems anaysts and other professionals involved in the analysis,

design and development of software applications.
Main features:

Open standards: XMI, SVG and PGML - ArgoUML supports open standards

extensively - UML, XMI, SVG, OCL and others.

ArgoUML is compliant with the OMG Standard for UML in its latest version

1.3. The code for the internal representation of an UML model is completely

33

generated from the specification and, thus, follows it very closely. To achieve
this, a special metamodel library (NSUML) was developed by Novosofts and

made available under LGPL.

XML Metadata Interchange (XMI) is the standard for saving the meta-data that
make up a particular UML model. In principle this will alow you to take the

model you have created in ArgoUML and import it into another tool.

UML design editing - ArgoUML uses GEF, the UCI Graph Editing Framework

to edit UML diagrams. The following diagram types are supported:

Class diagrams

State machine diagrams

Activity diagrams

Use case diagrams

Collaboration diagrams

Object/Component/Deployment diagrams

Sequence diagrams

Object Constraint Language (OCL) is the UML standard for expressing
constraints within diagrams that express the dynamic behavior of a design. At
present OCL is quite new and not widely available. ArgoUML is one of the few

CASE tools to provide comprehensive support.

Model information for static structure and use case diagrams can now be stored

to amySQL database.
34

Diagrams can now be exported to gif, PostScript, eps, PGML and svg. The
standard saving format for diagramsis still PGML, but it will be changed to the

upcoming standard for Scalable Vector Graphics (svg) of the W3C consortium.

100% Java - ArgoUML isa 100% pure Java application. This alows ArgoUML
to run on al platforms for which a reliable port of the Java2 platform is
available. Java was conceived as an interpreted language. It doesn't have a
compiler to produce code for any particular target machine. It compiles code for

its own target, the Java Virtual Machine (JVM).

Open Source alows to extend or customize it - ArgoUML is an open source
project. The availability of the source ensures that a new generation of software
designers and researchers now have a proven framework from which they can

drive the development and evolution of CASE tool technologies.

Cognitive features like: reflection-in-action, opportunistic design, comprehension and

problem solving - The implementation of these theories within ArgoUML is through a

number of techniques.

3.1. ArgoUML diagrams

The UML standard specifies eight principle diagrams, all of which are supported by

ArgoUML.

Use case diagram. Used to capture and analyse the requirements for any OOA&D

project.

Class diagram. This diagram captures the static structure of the system being designed,

showing the classes, interfaces and datatypes and how they are related. Variants of this

35

diagram are used to show package structures within a system (the package diagram) and
the rel ationshi ps between particul ar instances (the object diagram). The ArgoUML class

diagram provides support for class and package diagrams.

Behavior diagrams. There are four such diagrams (or strictly speaking, five, since the
use case diagram is a type of behavior diagram), which show the dynamic behavior of

the system at al levels.

State diagram. Used to show the dynamic behavior of a single object (class instance).
This diagram is of particular use in systems using complex communication protocols,

such as in telecommunications.

Activity diagram. Used to show the dynamic behavior of groups of objects (class
instance). This diagram is an alternative to the state diagram, and is better suited to

systems with a great deal of user interaction.

Interaction diagrams. There are two diagrams in this category, used to show the

dynamic interaction between objects (class instances) in the system.

Sequence diagram. Shows the interactions (typically messages or procedure calls)
between instances of classes (objects) and actors against atimeline. Particularly useful

where the timing relationships between interactions are important.

Collaboration diagram. Shows the interactions (typically messages or procedure calls)
between instances of classes (objects) and actors against the structural relationships
between those instances. Particularly useful where it is useful to relate interactions to

the static structure of the system.

36

Implementation diagrams. UML defines two implementation diagrams to show the
relationship between the software components that make up a system (the component
diagram) and the relationship between the software and the hardware on which it is

deployed at run-time (the deployment diagram.

The ArgoUML deployment diagram provides support for both component and

deployment diagrams.

3.2. Working with ArgoUML

At the top there is a menu bar with commands available. In the file menu you can store
the model or open another model instead. The bulk of the window comprises four sub-

windows or Panes.

The upper left part of ArgoUML, Navigator Pane, lists the diagrams and objects of the
model in one of several views. The upper right part of ArgoUML, Editing Pane, shows
one diagram at the time. You can work with the objects in the diagrams, dragging and
dropping and using the quick-links to create new objects connected to the aready

present objects.

The lower right part, Details Pane, you contains various details of various objects of the
model. You select the object in one of the upper levels and choose what details you
want to examine using the tabs. The lower left part, To-Do Pane, contains a list of all

ToDo items for this model.

37

ﬂnrgnUHL - progTesi.zargo !li[

File Edit “iew Create Diagram Arrange Seneration Critique 1o Help

1
| Package-centric b | = | = F & -~ T‘ - =
@ T untitieamodel e

@ clazz diagram 1

use case diagram 1

ED)

Q E tornello
tornello
E ettt tomello
B newdperation + newsttr 1 0 int
E i + newDperation() : void {sequential}
E waoid

-
| By Pricrity il |E 15 fems |
ke b SEaree
T o Sl
o |j Wi Mo Tololtem selected
@] Low
Pasi
|

3.2.1ArgoUML Menu Bar

Argo’'s menu bar consisits of menus for File, Edit, View, Arrange, Create, Generate,

Critique, and Help.

‘ﬂ ArgoUML - progTesi.zargo

File Edit “ew Create Diagram Arrange Seneration Critique Help

3.2.2The Navigation Pane

Argo’s Navigation Pane shows you the contents of your design. This element of Argo’s
Ul should be familiar to anyone who has used the Microsoft Windows Explorer or any

one of a number of commercial CASE tools.

38

FPackage-centric hd ||ﬂ = ‘

o v’g untitiedhtodel

@ class diagram 1

@ use case diagram 1
& B Tomello

The navigation pane allows the user to view the structure of the model from a number
of predefined perspectives. It also alows the user to define their own perspetives for

custom navigation of the model.

3.2.3 ArgoUML Editing Pane

Argo’s Editing Pane is the main work area. You use this pane mainly to edit diagrams.
However you can also use this pane to edit tables that list the contents of diagrams or
other design objects. Several tabs are located at the bottom of this pane to indicate the
different ways in which the main object can be viewed and edited. ArgoUML includes
an "As Diagram" tab, and if you download optional jar files you may also see tabs

labeled "As Table" and "As Metrics'.

The toolbar at the top of the editing pane provides the main functions of the pane. The

default tool isthe Select tool. The tools fall into four categories.
Layout tools. Provide assistance in laying out artifacts on the diagram.
Annotation tools. Used to annotate artifacts on the diagram.

Drawing tools. Used to add general graphics artifacts to diagrams.

39

Diagram specific tools. Used to add UML artifacts specific to a particular diagram type

to the diagram.

il |

o |

Tomella

+ new Operationd]) : woid [sequantial}
= =

| JZ s

H A= Dimgram

3.2.4ArgoUML "To Do" Pane

Argo’s "To Do" Pane helps keep designers on track by reminding them of what needs to
be done. Itemsin the To Do pane can be personal reminders entered by the designer, but
most of them are generated by design critics. Design critics in ArgoUML continuously

analyze the design looking for incompl ete or problematic areas.

3.2.5ArgoUML Details Pane

Argo’s Details Pane allows you to edit the details of the currently selected design

element or "to do" item.

» ToDoltem— Argo's ToDoltem Tab shows the description of the selected "to do"
item in the "To Do" Pane. The description consists three short paragraphs about

the problem, why this problem is likely to be important to you, and steps that

40

you can take to resolve the problem. The ToDoltem tab will then function as a

wizard, leading you through the steps of resolving the problem.

Properties— Argo's Properties Tab shows the properties of the selected design
element. The contents of the tab pane vary depending on the type of design

element selected.

Javadocs— Argo's Javadocs Tab allows you to enter documentation on the
selected design element. Documentation templates are provided for many types

of design elements to get you started.

Source— Argo's Source Tab allows you to preview the Java source code that will
be generated for the selected design element. If you are using JDK (not JRE) and
have included col ori ze. jar in your CLASSPATH, you will see the Java
source code with keywords, constants, and comments colored differently. This
helps make the structure of the code more visible at a glance and makes the code

easier to read quickly.

Constraints— Argo's Constraints Tab allows you to enter and view OCL
constraints on the selected design element. The Object Constraint Language
(OCL) is a simple predicate logic language that allows you to add more meaning

to your designs.

TaggedValues— Argo's TaggedValues Tab allows you to enter and view
TaggedValues on the selected design element. TaggedValues are simple key-
value pairs that are stored with the design element, but are (usually) not

interpreted by the system.

41

e Checklist— Argo's Checklist Tab lists questions for you to consider while making
design decisions. Some of these questions are specific, while others are more
open-ended. They are similiar to the kinds of checklists that many software

developers use in design review meetings.

» History— Argo's History Tab shows a time-ordered list of all the criticisms that

were raised by design critics and how they were resolved.

o[& Source State r*hﬁ;qwﬁ;ﬁiﬂg& r‘- Tagged Yalues |/ |
“ToDafem | A Properiies | A Documertation | A Stie | A Saurca |

; Uml.1.3 ‘w

|/ /CODICE DELLA CLASSE...Tornello

Eclass Tornello
i B

F4 Attributes

/7 Azsociations

1]

3.2.6 Creating a class in ArgoUML

The class is the dominant artifact on a class diagram. In the UML metamodel it is a sub-

class of Classifier and GeneralizableElement.

A class is represented on a class diagram as a rectangle with three horizontal
compartments. The top compartment displays the class name (and stereotype), the
second compartment any attributes and the third any operations. The last two

compartments may optionally be hidden.
Identifying class diagrams from existing materials (Vision, Use Cases etc).

Classes can be added to the untitled diagram by clicking on the class icon in the toolbar.

42

The user can set the name of a class or association by simply selecting it and typing.

Double clicking on a name allows the name to be edited. You can double click on the

other compartments of the classto edit them.

The "Properties’ tab into the details pane shows details of the selected model element.

i e || = . (R
!F‘_aclkage-centrlc v | = = e = /" ﬁr = ¢- HE B [
L @ untitledhodel ; E == === =—— —— = —]|
@ class diagram 1 _
@ uze case diagram 1 B
@ B tomnello
tornello
E et tomello
ﬁ nemidperation +newar 1 : int
E int + new Dperation) : woid {sequential}
E woid

3.2.7 Creating statecharts in ArgoUML

This is what the final appearance of the State diagram inside the Enroll.argo example

will look we are finished.

Every state diagram is associated with exacltly one class. In this case, the state diagram

above is associated with the Grad class from the class diagram of Enroll.argo.

To create a new state diagram, you must first select the class that you would like to
make the state diagram for, and then choose Create-Diagrams-StateDiagram. Once this
is done, name the state diagram "Grad states’. Double-click on "Grad States' to go to

the state diagram editor pane.

43

Use @to place theinitial state, and @to place the final states. Next, add and name the

Trigger for all of the transitions E

Adding a Composite State: A composite state = contains other states. Place one of

these in the diagram and then put the "writeDissertation” and "finalDefense" states

withinit.

The correct title for this category should be State Machines. Thisisraised as an issue to

be fixed in afuture version of ArgoUML.

| Package-centric . | (}:|| = E i
@ ‘E'b(j untitledhdodel

@ class diagram 1
uze caze diagram 1
Q E Tomello
Tormello

[o]-][e]@]c]*[+]@|®| = o]

0

Locked a4 it Unlocked

Transi: Pass

L]

[D |
I. A= Dimgram

4. From statechart to Java code

A statechart diagram represents a state machine. The state machine belongs to an object
that is an instance of such a class of the model: this class should be able to have a

dinamic behaviour.

Statecharts represent behaviour of entities in such complex systems and they specifiy

the actions happened after an event. Next there is an example of a state machine.

WCursor o 55N
I - 1] k|
[Rty " Gefling SSN | Presskey
Ratny'Clear SSM H U
Displaykay
J\- 4 ry B
Cancal/Cuil / ;f"
- -
! e
P -
i ot validy sl.twnitf,f
() Display =rror e
x—“.’-’; ITIERSRE .-"j
: o
: o
[walid]! ™, /,/
start . o
Transaction T ; ;{-_"f]
(Valldating) " GetingPIN | PressikKey
e Submit Displaydot
[P—
. A W, -

If we have aclass A and it has a statechart S that models its behaviour, the use of the

instance of class A is controlled by the statechart S.

In this work we extend class A in such a way that the call of the A-methods is

controlled by and only by the statechart S. Without S avery call is possible.

There are many techniques of implementing state machine, the most common implies

statements like Switch/Case for dostinguish object’s states. This solution is not scalable:

45

if the number of states of the state machine grows, the code wil be not readable. More,

in this solution we link together the logic of the state machines and its implementation.

So, we chose to implement statecharts referring to Design Pattern’ State?.

4.1. Design Pattern and polimorfism

The State pattern is an example of a tremendously useful software pattern that takes
advantage of polymorphism. The State pattern uses polymorphism to define different
behaviors for different states of an object. It is a valuable pattern to master, because it

can be used in practically any sizable application.

Separating behaviors into disparate objects makes sense when the separation takes
advantage of polymorphism. Polymorphism allows two objects to be treated identically,
using the same methods, even though the objects implement these methods in quite

different ways.

Polymorphism works because the classes that implement the same method differently
both derive, at some point, from a common superclass. A general program is written
that operates on objects of the superclass type. The program is oblivious to the fact that
what it thinks of as a superclass object is, in reality, an object that is a member of one of
the subclass types. When the program invokes a method defined in the superclass, the
method that gets called is actually the subclass method that overrides the superclass

version.

Polymorphism allows very general programs to be written for a superclass, letting the

subclasses take care of the details. An example of this is a drawing program that can

! See[6] and [1].
% See[1], [8] and [11].

46

write aloop that processes alist of graphic objects including lines, squares, and circles.
It can work from the bottom most graphic object to the top, invoking the draw() method
on each object in turn. The drawing program manages the sequence of drawing
operations, which depends on which objects are "on top." Each object, in turn, is
responsible for drawing itself. The program works on objects of type Graphic, knowing
that every Graphic object always implements the draw() method. The subclasses Line,
Square, and Circle, al derive from the superclass Graphic, and each overrides the
draw() method in its own fashion. The program can then be extended by adding an
Elipse or Rectangle class. Aslong as the new classes derive from Graphic, and as long
as they implement the draw() method appropriately, the basic drawing program

continues to work, unchanged.

The next part describes the state pattern and then how we use polimorfism to realize and

implement the state machine.

4.1.1 State Pattern

Now we describe the state pattern.

Intent

Allow an object to alter its behaviour when its internal state changes. The object will

appear to change its class.

Motivations

Objects have behvaiours that depends to the system thay belong to. With this pattern,
we can control the flux of the events, taking care of leave distinct the instance of the

object and the instances of class that represent the state machine.

47

Structure

Context

Requeab ||

AbstractStare

handle (]

ConcreteState A ConcreteStateB

handle | handlea ||

Some code structure may be the next one.

cl ass Cont ext

{
State state = new ConcreteStatel(this);
request() // Un evento e accade
state. handl e();
}
state = Abstract State. get NextState(e);
}
abstract class AbstractState
{

static final AbstractState stateA =

new Concr et eSt at eA() ;

static final AbstractState stateB =

48

new Concr et eSt at eB() ;
protected State();
abstract public void handle(Event e);

}
cl ass ConcreteStatel extends State
{
public void handl e(Event e)
{
oggetto. met odo_appropriato ();
}
public State get NextState(Event e)
{
return stato_appropriato;
}
}

class ConcreteState2 extends State { .. }

Partecipants

Context class

Defines the ionterface of interest to clients and it maintains

State classes

The State class is an abstract class. It provides some basic behavior, but its only real
purpose is to be extended to produce one or more "real" state classes. In this case, two
state classes are defined, Statel and State?. To create additional states, you would copy

one of these classes.

abstract class AbstractState { .. }
class ConcreteStatel extends AbstractState { .. }
class ConcreteState2 extends AbstractState { .. }

Static variable

The State class defines three variables:

49

static State initial State;
static final State statel
static final State state?

new ConcreteStatel();
new Concr et eSt at e2();

Thefirst variable is the default initial state. The first state that gets created will be stored
in that variable, in case the StateOwner object wants to use it. (It doesn’t have to.) The

next two variables create the state objects using the classes Statel and State2.

Because these variables are defined as static, they belong to the State class. In other
words, they are class variables, which means they belong to the class as a whole, rather
than to individual objects. Without the static keyword, they would be instance
variables, meaning that each object created using the class (each instance of the class)

would have its own variable.

In general, using the static keyword means there is only one copy of the variable for the
entire class, no matter how many objects are created using that class. Such variables
generally are used for class-wide data, such as a count of the number of objects that are

created using the class.

Constructor

The next significant part of the State class is the constructor, which saves the first state
created as the default initial state. The important feature of the constructor is that it is

defined as protected.

protected State()
{

}

Because the constructor is protected, it cannot be used by other classes to create new

if (initialState == null) initial State = this;

objects. It can only be used by the State class and by those classes that extend the State

class.

50

Since the State class is abstract, only the subclasses have access to the constructor,
which is equivalent to making the subclass constructors private. In other words, the
subclasses can create themselves using static variables, but they can never be used at

run time to create additional objects.

In this case, the abstract State class creates the static variables statel and state2. The
protected constructor forms a "closed loop" with these static variables. The creation of
the static variable statel accesses the Statel constructor, which invokes the State
constructor, which is protected. The final result is that the state variables can only be
created from within the State class and its subclasses. They form a predetermined set

that is defined at compile time.

Operations

The last part of the State class can define some abstract methods.

Because these methods are defined as abstract, they have no method body. That means
they must be implemented by the subclasses that extend the State class. That,
fundamentally, is the reason for defining an abstract class in the first place -- to specify
the kinds of methods the individual states will provide, and leave the implementation up

to them.

The State class says that each state will have two methods, one for when you exit (or
leave) a state, and one for when you enter (or arrive at) a state. Although you do not
aways need both methods, frequently it is helpful to have them. In multiple state
systems, the combination of leaving one state and arriving at another can completely

define the actions needed for a transition between the two states.

51

4.2. State pattern for code generation

For explaining use and advantages of State pattern, we referred to an example:
modeling a access control system, such as the metropolitan one. In this area user finds a

turnstile before entering to the trains area. A turngtile isillustrated next.

In this context, we can find in the model, a class “Turnstile”.

The behaviour of a turnstile can be expressed in this way:

If the turnstile is locked and user insert coin, turnstile becames unlock and user

can pass over.

e If the turnstile is locked and user try to pass, turnstile set an allarm.

» If the turnstile is unlocked ad user pass over, the turnstile returns locked.

e If the turnstile is unlocked and user inserts coin, turnstile may thanks!

52

Tomello

attibutol;

attributoZ;

operazionsli) ;

operazionad) g

The “Turnstile” class is represented above.

The statecharts may be very simple, but in the context of “Turnstile” class, it may
became difficult recognizing the behaviour logic of the class from the implementation
of the state machine, if it had implemented as switch/case statements. Far from these

problems, we use State pattern for implementing the statechart (displayed next).

Moneta/Sblocca

Passaggio/Mlarme ——— ——T——. Moneta/Grazie

Bloccato | | Sbloccato |+
Il... ! l\\ .-I

Passaggin'Blocca

For generating some code, we assumed that the designer want represent events (such as
“Coin” and “Pass”) by operations declared in “Turnstile” class. We supposed that in the

CASE tool the designer:

1. add a class “Turnstile” in the class diagram, adding to it its attributes and
operations not directly regarding the dinamic behaviour.

53

2. select the class and add a state diagram with complete description of events,

actions and transitions.

3. then tha CASE tool will add events and actions as operations of “Turnstile” class

in this way:

a. adding declarations of event to “Turnstile” class.

b. creating a new class “TurnstileSM” containing declarations of the events

plus actions.

The the code geration work in this way: starting from the “Turnstile” class and its
statechart, we create many classes, nameofState, representing the states of statechart.
These classes implements all events and actions operations declared before in

“Turnstile” class and in “TurnstilSM” class.

Only the operations regarding that state can be called in such a nameofState class.

In our example, “Turnstile” class is derived in “TurnstileSM” class, that represent the
behavioural context, then in the “TurnstileState” class (an interface) and from it we

create the classes nameofStat, as illustrated next..

Tornello

attibuctol;

attributol;

operazionsl ()

operaziome2 () ;

mometal)
FPassaggiol) ;
T{TI‘[]E:“USM zsinterfacesx
= TornelloState
H# statoBloc : BloccatoState
statofSbles @ ShloccatoState
moneta) ; fE-"'--"-- + moneta{TornelloContext to);
passaggie () + passaggio(TorhelloContext te))
P

BloccatoState

ShloccatoState

All static members in “TurnstilState” class make sure that will be one and only one

instance of nameofstate classes in this context.

This architecture has many advantages: the dynamic behaviour of the turnstile is

separates from the context of the whole system.

The code structure generated can be the next.

55

class Turnstile

{
attributel
attribute2
public void opl();
public void op2();
public void coin();
public void pass();
}

class Turnstil eSM

public void coin();
public void pass();

}
abstract class TurnstileState
{
static LockState _stlock =
new LockSt at e();
static UnlockState _stunlock =
new Unl ockSt ate();
void SetState(TurnstileState);
public void coin(TurnstileSMtc);
public void pass(TurnstileSMtc);
}

cl ass LockState extends Turnstil eSM

{

public void coin(TurnstileSMtc)

{
tc. Set St at e(_stunl ock);
tc.unl ock();
}
public void pass(TurnstileSMtc)
{
tc.alarm));
}

class U ockState extends Turnstil eSM

{

56

public void noneta(TurnstileSMtc)

{
tc. thanks();
}
public void passaggi o(TurnstileSMtc)
{
tc. Set State(_stl ock);
tc.unl ock();
}

The code generated is open and any change doesn’t have conseguences on the whole

system code implemented.

This structure is scalable and reusable: we add any behaviour while the system grows,

maintaining these behaviour separated from the system model.

Thi work add these functionalities to ArgoUML: we can generate java code from the

state diagram and class diagram.

57

5. ArgoUML code organization

5.1. General architecture

The ArgoUML application consists of three main packages (each containing many
subpackages): the Novosoft UML metamodel library (NSUML), the Graph Editing
Framework (GEF), and of course, ArgoUML itself. NSUML contains all the classes
needed to represent and manipulate UML 1.3 models, GEF is responsible for visualising
these UML models as diagrams, and ArgoUML ties all this together and adds the

application logic.

The Model-View-Controller architecture is essential for any UML modelling tool. Each
project usually contains exactly one UML (user level) model, but contains many views
on the model. The various UML diagrams, the form-based property panels, even the
navigator pane (which shows the model in a tree-like structure) are all simply different

views which visualize the model from di_erent perspectives and in di_erent ways.

5.1.1 Packages

ArgoUML itself breaks down into several components. The graphic does not reflect the

true package names, neither the true dependencies of the packages.

58

|
[-———] — UML meta | - —l
. model | _
Design - Design
perspective Ay checklist
- =
Y &
Code e -
Generation ; ArgoUML UI Design
_______________ SRR critics

LML
Diagrams

GEFR Us=ser model

There are three major libraries that make up the bulk of the Argo/UML source code.

Each is made up of several Java packages. Argo/UML also contains several packages

itself.

The numbers next to each package indicate the number of classesin that package. Each

package is described below.

GEF (170 classes)

+ uci . gef (105) -- reusable graph editing framework: shapes, selections, grids,
editors, layers, commands

+ uci . gef. deno (19) -- demonstrations how to use GEF

« uci.gef.event (2)-- events generated from GEF editors

59

uci . gr aph (15) -- generic interface between GEF and graph representations,
similiar to Swing's TreeModel
uci . util (12) -- general purpose utilities

uci . ui (13) -- property sheet and other small user interface utilities

uci . beans. edi t or s (4) -- custom property editors used in property sheet

UML meta-model (120 classes)

org. argoun . um . Foundat i on. Cor e (26) -- from UML Semantic
Specification

org. argouni . um . Foundat i on. Dat a_Types (22) -- from UML
Semantic Specification

org.argoum . um . Foundat i on. Ext ensi on_Mechani sns (2) --
from UML Semantic Specification

org. argoum . um . Behavi oral _El enent s. Common_Behavi or

(16) -- from UML Semantic Specification

org. argounl . un . Behavi or al _El enent s. St at e_Machi nes (20)
-- from UML Semantic Specification

org. argouni . unm . Behavi or al _El enent s. Use_Cases (2) -- from
UML Semantic Specification

org. argouni . un . Behavi oral _El enent s. Col | abor ati ons (6) --
from UML Semantic Specification

org. argoum . um . Model _Managenent (5) -- from UML Semantic
Specification

org. argoum . uml . t est. ong (15) -- examples from UML Notation Guide
org. argouni . unl . gener at e (3) -- placeholder for future code generation
features

Argo (38 classes)

org. argoumn . ker nel (34) -- reusable framework for critics, "to do" list,
design history

org. argoumn . cogni ti ve. checkl i st s (4) -- framework for design
checklists

Argo/UML (191 classes)

org. argoum . um (1) -- Main

org. argoum . um . ui (111) -- Argo/UML windows, dialogs, panels,
navigational perspectives, property panels

org. argoum . unm . vi sual (25) -- UML diagram definitions, UML node
and arc definitions

org.argoum . um . cognitive.critics (44) -- design critics
org.argoum . um . cognitive.critics.java (1) -- designcritics
org.argoum . um . cognitive.critics. patterns (3)--design
critics

org.argoum . um . cogni tive. checkl i st (6) -- design checklists
org.argouml.Images -- gif images for splash screen and toolbar icons

60

5.1.2 ArgoUML core

ArgoUML uses Ant as it's main build tool. The whole build process is controlled by the

bui | d. xm fileinthe main source directory.

The parser for Java reverse engineering is generated with Antlr from a customized Java

grammar.

It all beginsinor g. ar goum . appl i cati on. Mai n: set up main application frame
(org. argoum . ui . Proj ect Browser), the project
(or g. argoumi . ker nel . Proj ect), numerous classes, and finally as a background
thread: cognitive support (or g. ar gounml . cogni ti ve. Desi gner) and some more
classes. The Pr oj ect Br owser initializes the menu, toolbar, status bar and the four

main areas:
navigation pane (or g. ar gouni . ui . Navi gat or Pane),
editor pane (or g. ar goun . ui . Mul ti Edi t or Pane),
to do pane (or g. ar gouni . cogni ti ve. ui . ToDoPane),

details pane (or g. ar goum . ui . Det ai | sPane).

61

ArgoUML U GEF

ArgoDiagram I Diagram
L

Kernel Foundation
foore

<eginglaton=>
ProjacliBrowsear

Progect =<imfarfaca=>
* Mhamsspace

All of the uml diagrams and models in a project are contained in a single Project

instance. This classis aso responsible for loading and saving diagrams and models.

An Argo Project consists of many members, each of which hasits own requirements for
persistance. The UML model, the diagrams, and information about the project itself
must all be saved to afile and, of course, be restored again whenever the user reopens
the project. Since both GEF and NSUML can save and restore XML documents, Argo

only has to invoke the appropriate methods.

The abstract class ProjectMember forms an interface between Argo and the individual
member. The concrete classes ProjectMemberDiagram and ProjectMemberModel

override the save and load methods and call the approriate GEF and NSUML methods.

The ActionSaveProject.trySave method (package org.argouml.ui) is invoked whenever
the user click on the appropriate button or selects the ‘Save Project’ menu item. This

method first saves the project information in an argo-specific XML document.

62

Thisis done in the same way GEF creates its XML documents: atemplate file (argo.tee)
specifies which member variables of the project are to be saved. Upon completion,

every ProjectMember gets a chance to save its information:

The ProjectMemberM odel .save method creates an XMIWriter instance and generates an

XMI document.

The ProjectMemberDiagram.save method creates an OCLExpander instance and

generates a PGML document .

In order to avoid having several, semantically bound documents as separate fies, Argo

packs them all together into a standard ZIP-file with the extension zargo.

Restoring the state of a project from the XML documentsis similar. An XM Reader is
responsible for recreating the model, and OCLExpander instances recreate the project

status and the diagrams.

5.1.3 ArgoUML main window

Each of the classes are designed to be subclassed. In the links, there will be a hierarchy
showing all of the classes that currently inherit from this class, and also what part of

Argo/UML’s main window they are associated with.

Throughout the code of there are groups of classes that share inheritance hierarchies,

and play a key role in how the program works.

Below is the Argo/UML main window. In the window, there are four panes. The
Navigation pane (top left), Editor pane (top right), To Do pane (bottom left), and the

Details pane (bottom right).

63

ﬂnrgnUHL - progTesi.zargo !lil

File Edit Yiew Create Diagram Arrange Seneration Critique 1000 Help
: 4\ & [|
LA BBl T T] B85 =2 & | B

|Package-centric v| = =

| —
@ T untitieamodel

@ clazz diagram 1

use case diagram 1

@ E tornello
tornello
E ettt tomello
B newdperation + newsttr 1 0 int
E i + newDperation() : void {sequential}
E waoid

A
|B3.r Priarity
|j High -+ ToDo kem 5@% i
o |j Wi Mo Tololtem selected
@] Low -
|
2

The main ArgoUML window is the singelton ProjectBrowser, containing classes for

each of the windows panes.

The navigator pane displays the project in one of several perspectives as a tree-like
structure, enabling easy navigation. The multieditor pane is the main pane of the
application containing a diagram-specific toolbar, and of course, the GEF editor pane
displaying the active UML diagram. The details pane shows the attributes of the
currently selected model element. The todo pane displays a list design issues which
need the user’s attention. The application menu bar and status bar perform the obvious

tasks.

ArgalIML Ul

=asinglelon==
ProjectBrowser

ryY

Mavigator
Pane

GEF

Edilor

Multi Editar
Pane

| StalusBar | | [Detalls Pane | Tobo Pane |

5.1.4 Menu

It is based on the swing class IMenu, which requires a class implementing MenuM odel

from which it gets the tree’s data.

There are many more classes that extend UMLAction, but many have been omitted for

the sake of clarity. Notice that the two images above paralell because they represent the

same actions. This diagram could be repeated for each of the menus.

ﬁ ArgoUML - progTesi.zargo

File Edit “iew Create Diagram Arrange Seneration Critique Help
UML Action
,f‘|x
ActionOpen ActionSave ActionPrint ActionExit

ActionMew

65

5.1.5 Navigator pane

The navigator pane is shown to the left of the editor pane. It shows the user's model in a
tree-like diagram. It is based on the swing class JTree, which requires a class

implementing TreeModel from which it gets the tree's data.

Since the user's model is a graph and not necessarily a tree, there are many ways
(perspectives) to represent the model in a tree-like structure. One possibility is to start
with the model, branch into the namespaces and packages (and subpackages), branching
further into the individual classes and finally to the class attributes and operations

(which are leavesin the tree).

The only real difference between the perspectives are the parent-to-child branching
rules. In the above example, the package-centric perspective has the rules 'package-
tosubpackage’, ‘package-to-class, 'class-to-attribute’, etc. These rules are implemented
in GoParentToChild classes realizing the TreeModelPreregs interface. All the rules

known to the system are registered in the static vector NavPerspective.rules.

Package-centric * g =

@ w untitledtodel

@ class diagram 1

usze case diagram 1

& B Tomello

66

5.1.6 Editor

The type of diagram that the figure below is displaying is a class diagram. This class
can be extended to create other types of diagrams that aren’t currently implemented

from the UML specification.

&4 8|78 T]|E|&] | D
H |
Tomello
+ new Operation) : wvoid {sequential}
= =l
J q.l_f:f:i:f:l _| "_l_ :
A A= Dimgram

ArgoUML uses the GEF library for the various UML diagram types. GEF assumes that

the data it visualizes is structured as a graph consisting of nodes and edges.

GEF uses the GraphModel interface to access the model. The ArgoUML classes which
implement this interface must map the UML metamodel to GEF's node-and-edge

structure.

A use-case diagram can contain the following model elements. actors, use-cases,
dependencies and generalizations. The UseCaseDiagramGraphModel must map these

metaclasses to GEF figure classes.

67

Actors and use-cases are considered nodes, since they can exists independently.
Generalizations and dependencies are edges which connect the nodes. These figure

classes represent the metaclasses graphically in a specific diagram.

Implementing the various UML diagrams (static structure, use-case, sequence, €etc.) is
suprisingly straightforward. Due to the supporting framework, only a few classes for

each diagram type are necessary. Each UML diagram type requires:

aclass derived from Diagram. This class should contain member objects for each

command (usually Cmd-Subclasses) the user may trigger. ArgoUML supplies the
classes ArgoDiagram which uses the observer pattern to add listener registration
support allowing the diagram to react to changes in the model, as well as the class
UMLDiagram which adds support for a UML model (interface MNamespace as
opposed to the generic MutableGraphModel) and commands common to all UML

diagrams.

a displayable Fig subclass for each UML metamodel element which can be inserted in

the diagram.

1. a factory <class redizing the GraphEdgeRenderer and
GraphNodeRenderer interfaces which can create the necessary Fig

instances on demand.

2. a adapter class realizing MutableGraphModel allowing GEF to access
and modify the UML model. Support for each type of UML diagram is

encapsulated in its own subpackage hierarchy.

68

UML Diagram

UkLClassDiagram | | UMLACWEyDiagram UnLUseCaseDlagram

LML State Diagram

The associations (lines) drawn between the figures shown in the Editor pane of the

window are subclasses of Fi gedgeModel El enent .

From looking at the window below, figuresin the Editor pane are elements of this class.

So to make a new diagram type, this class would need to be extended. In this particular

diagram, there are four instances of Fi gCl ass (shown third from the left in the above

hierarchy).

69

FigNodeModaElemant

A
FigactionStaie FigTransition
Ficahetor FigSiate
FigClass FigFackage
Figlnstance Figiats
Figlnterface

5.1.7 Details pane

The details pane is below on multieditor pane. It consists of several tabs, each of which
shows details about the currently selected object. This object can be an element in the
user's model, a diagram or afigure. This allows the user to inspect and edit the object’s

attributes in aform-based manner.

§§|Uml.'1.3 v

EEHCDDICE DELLA CLASRE...Tornello
Eiclass Tornello
i

S Atrribures

S/ hssociations

70

ToDo Tab is used by the todo pane to show details about the selected todo item

Properties Tab shows the attibutes and references of the currently selected model
element. Its contents is dependent on the metaclass of the element { aclass has different
attribues than an actor. These different contents are encapsulated in subclasses of

PropPanel.

Documentation Tab alows the user to add textual documentation to individual model

elements. These text strings stored as tagged values in the model.

Style Tab allows the user to change appearance of the figures in the diagram. This does

not change the model in any way, only the visual representation of the model elements.

Source Tab lets the user enter implementation details directly into the model.

Constraint Tab displays the constraints linked to the selected model element.

Tagged Values Tab shows the tagged values of the selected element.

CheckList Tab is used by the cognitive support package.

The property tabs are located below in the Navigation pane. To add another tab,

TabSpawnable would have to be inherited from.

71

TabSpawnable

i
TabToDo TabJavasSrc
TabDiagram TabRasulis
TabHistory TabGonstraints
TabText TabProps
£ TabChacklists
TabDocs TabSrc TabHash b iR

72

6. ArgoUML libraries

6.1. GEF

GEF, the thing which is hidden in gef . j ar, is responsible for displaying the graphs
and which gives you the ability to move things around. GEF used to be closely

interwoven with Argo, but is now more or less separate.

The goa of the GEF project is to build a graph editing library that can be used to

construct many, high-quality graph editing applications. Some of GEF's features are:

Node-Port-Edge graph model that is powerful enough for the vast magjority of connected

graph applications.

Model-View-Controller design based on the Swing Java Ul library makes GEF able to
act as a Ul to existing data structures, and also minimizing learning time for developers

familiar with Swing.

XML-based file formats based on the PGML standard (soon to support SVG).

6.1.1 Characteristics

The Graph Editing Framework (GEF) is a library of java classes which support the
visual representation and modification of connected graphs. It is based on the MVC
pattern and contains support for both the view and the controller, and specifies a set of
interfaces to access the model. ArgoUML uses this framework to display the UML

diagrams.

73

In MV C the view is responsible for visualising the model to the user. GEF assumes the
model is a connected graph, although the class hierarchy could be extended to support
other models. A connected graph consists of nodes with ports, and edges may connects

ports with each other.

GEF hase
m—' [ITE— 1 Laper |
I I__._-'T GEF
presanlation
| Fia
P pescd | | Propect LagerDiagram i'
| | | |
£ e
GEF graph |
el b rfmcn
GraphEdgsRenderer

Disgam | ey | LaynrPampacie "'___ S iyl rfmcnes
Fv" L GraphhodeRenderes

T el
L raphieioace
i

———

La.an'.:.r-:pr..-.n.nunlnr.u'i |

B M coimioiaon s>
L | Whtakdn Graplitdcdsl

6.1.2 Layers

The class LayerManager and its array of Layers form the view support in GEF.

Layers are like clear sheets of plastic, each containing part of a drawing. Layed on top
of each other, they make the overall drawing. They can be hidden, locked or grayed out
individualy. LayerDiagram is a layer which contains a collection of view elements

(class Fig).

LayerPerspective extends on this by assuming that the model is a connected graph. Each

view element represents a node or an edge in the model.

74

The class LayerPerspective accesses this model through several interfaces: GraphModel
supports traversing the graph; GraphNodeRenderer and GraphEdgeRenderer are class

factories for creating displayable Fig instances from the model’s nodes and edges.

Usually, the user interacts with the application by clicking on buttons, activating toolsin
toolbars or selecting menu items in popdown menus. In Java/Swing, menu items and
buttons are represented by with objects realizing the Action interface. Whenever a user
selects a menu item oder a toolbar button, the Swing library invokes the
Acti on. acti onPer f or med method. Usually applications make use of the default
action implementation, Abst r act Acti on, and derive their own actions from this

class.

6.1.3 Editor

The Edi t or class acts as a mediator that holds the other pieces together and routes

messages among them.

=<inierfacas>> f Modelmgl
foda u

Plai §

Edilor Modebdanager },-" Fighlodityinghlode |

Frephdodifying Mo mgl

Pl

hodeCreate ModePopup ‘ ModaSalact

75

6.1.4 Figs

Fi gs (short for figures) are the primitive shapes; for example, Fi gCi r cl e draws a

circleand Fi gText drawstext.

Fig

il /g

[1\.
Fiigl me FlgGroup
FigRact
FicgEclcps T

- Fighode
—r_:;’} -l
FigpT mad

6.1.5 Selections

Selections keep track of which Figs are selected and the effect of each handle; for
example, SelectionResize alows the bounding box of a Fig to be resized, while

SelectionReshape allows individua points of a FigLine or FigPoly to be moved.

The set of figures which are currently selected is handled by the SelectionManager.

Whenever the selection changes, this class also notifies all registered SelectionListeners
(observer pattern, section 3.1) of the change. This could allow another window to

update its contents to stay synchronized with the diagram. The SelectionManager also

76

asks the figure whether it has a Selection object. This object contains the behavoir of

afigurein its selected state.

Selection objects handle the display of handles or whatever graphics indicate that
something is selected, and they process events to manipulate the selected figure. GEF

offers several Selection subclasses, which can be extended by the application.

SelectionMove allows the user to move the figure by dragging it, but not to resize it

SelectionNoop does not allow the user do manipulate the figure.

SelectionReshape draws one handle over each point in the figure. This allows the user

to reshape the figure by moving the individual points.

SelectionRes ze shows the user the figure ’s bounding box with handles allowing the

user to resize the figure.

SelectionLowerRight is similar to the SelectionResize class, but only allows resizing by

dragging the lower right corner of the boudning box.

SelectionRotate allows the user to rotate the figure.

Galaclionbanager ‘ Spipclion

22

Selectioniove SelectionFolate SelecthonReshape

<<interfaces==
SelectionListenear

77

6.1.6 Commands

Cmds (short for commands) make modifications to the Fi gs; for example, CdGr oup

removes the selected Fi gs from their Layer and adds anew Fi gG oup in their place.

The GEF class O is an abstract superclass for al editor commands, adding command
arguments, support for \undo" and an application-global command registry. GEF
contains over 40 Cmd subclasses, supplying support for load/save commands, cut and
paste commands and commands to add and del ete nodes. An application can, of course,

add new Crd-subclasses as required.

6.1.7 Modes

Modes are objects that process user input events (e.g., mouse movement and clicks)
and execute Cmds to modify the Figs, for example, dragging in ModeSelect shows a
selection rectangle, while dragging in ModeModify moves the selected objects. | have
made central those concepts that are familiar to diagram editor users and avoided those
that are unfamiliar or too abstract; for example, GEF does not use the decorator pattern

(Gamma et al., 1995) or attempt to offer genera purpose constraint solving (e.g.,

Sannella, 1994).
: GEF base . . Javax. Swing
f . LHEU TR LTH P]
Lma 1 ™
. L
i
[.|.:I;:I|E|.I'.'|\ ['.-.II;:”.-.I.-\.;r 1 .;.-.II'I!'.-.II:u;II:Ir-I:":.I'Eh i '.-'.|T:l:.:;::-::_;',\-.'\-.'\-

78

Mode

N
ModeSelect | ModeModify
ModeDragScroll ModeBroom
ModeCreale ; ModePlace

Fla |

=zinterface=>
GraphFactory

ModeCreateFigRect |

6.2. NSUML

6.2.1 UML Metamodel implementation

Novosoft metadata framework is based on IMI specification and generated classes that
are required by JMI specification and also provides additional services like event
notification, undo/redo support, XMI support. NSMDF is loca in-memory

implementation.

79

It also provides code generated from UML 1.4 metamodel. Which could be used for

constructing applications based on UML 1.4.

NSMDF project is based upon NSUML 0.4.*, which is sill provided as separate

download. NSUML 0.4.* is being phased out.

6.2.2 Packages structure

The complexity of the UML metamodel is managed by organizing it into logical
packages. These packages group metaclasses that hows strong cohesion woth each other
and loose coupling with metaclasses in other packages. The Foundati on and

Behavi our al El enent s packages are further decomposed.

6.2.3 Foundation

The Foundation package is the language infrastructure that specifies the static structure
of models. The Foundation package is decomposed into subpackages: Core, Data types

and Extension M echanisms.

The Core package specifies the basic concepts required for an elementary metamodel
and defines an architectural backbone for attaching additional language contructs, such

as metacasses, metaassoci ations and metaattributes.

The Extension Mechanisms package specifies how model elements are customized and

extended with new semantics.

The Data types package defines basic data structures for the language.

80

Behavioural Meddel
Elemenis Managamen|
-
Faundation
Core R "1 Extension
—--—--—-z# Mechanisms
Data Types

6.2.4 Behavioural Elements

This Behavioural Elements package is the language superstructure that specifies
dynamic behaviour or models. The behavioural Elements package is decomposed into

the following subpackages:

Common Behaviour It specifies the core concepts required for behavioural elements.

Collaborations It specifies a behavioural context for using model elements to

accomplish a particuolar task.

UseCa ses It specifies behaviour using actors and use cases.

81

State Machines It defines behaviour using finite-state machine transition systems.

Activity Graphs It defines a special case of a state machine that is used to model

processes

Activity
graphs

| W
Collaborations Use casas Stata
machinas

Comman
behaviour

6.2.5 Model Management

Il pacchetto Model Managenent offre gli strumenti per organizzare un progetto,
come, per esempio, i packages. La struttura e riportata in Errore. L'origine

riferimento non ¢ stata trovata..

82

£

Wamespace

Ty
e

ModelElsmeant |

:> Packags

| Ganamizabellsmeant

PN

5

Model

6.2.6 API Description

The main domain of ArgoUML is, of course, UML models. ArgoUML uses the

Novosoft UML APl (NSUML), a java implementation of the Unified Modeling

Language 1.3 physical specification.

The Novosoft UML API contains four different groups classes representing the UML

types and metaclasses:

Primitives are UML data types with the stereotype <<primitive>>. These are mapped

directly to java classes.

NSUML maps UML data types with the stereotype <<primitive>> directly to javatypes

and objects.

UML primitives Java Type
Bool ean|bool ean
Nanme |String

83

nt

| nt eger

nt

Unl i m tedlnteger

Locati onRef erence|String

Ceonetry |String

Enumerations are UML data types with the stereotype <<enumeration>>.

NSUML realizes UML data types with the stereotype <<enumeration>> as final classes
with only private constructors. The names of the classes correspond to the UML name,

prefixed with a capital M.

UML enumeration NSUML Class

Aggr egat i onKi nd | MAggr egat i onKi nd

Cal | ConcurrencyKi nd|MCal | ConcurrencyKi nd

Changeabl eKi nd | MChangeabl eKi nd

MessageDi r ect or Ki nd | MVessageDi r ect or Ki nd

Operati onDi recti onKi nd| MJper ati onDi recti onKi nd

Or deri ngKi nd MO der i ngKi nd

Par amet er Di recti onKi nd | MPar amret er Di r ect i onKi nd

Pseudost at eKi nd | MPseudost at eKi nd

ScopeKi nd | MscopeKi nd

VisibilityKind MWisibility

For each enumeration literal, public static final instances are created on initialisation.

There will be exactly one (immutable) instance for each literal for the entire lifetime of
the systemb, ensuring that identity comparisons and equality comparisons will always

have the same resullt.

Datatypes are UML data types with no stereotypes.

Datatypes have no stereotype. Each datatype is mapped to exactly one NSUML Java
Class. The class MMultiplicity has four predefined instances for the most common
UML multiplicities: M0O_1, M1 1, MO _N and M1 _N. These instances are defined as

static class members (accessible as MMultiplicity.MO_1, etc.).

UML datatype NSUML class

Expr essi on | MEXpr essi on

Act i onExpr essi on|MAct i onExpr essi on

Ar gLi st sexpressi on|MAr gLi st SExpr essi on

Bool eanExpr essi on | MBool eanExpr essi on

Iterati onExpression|{MterationExpression

Mappi ngExpr essi on | MVappi ngExpr essi on

Pr ocedur eExpr essi on | MPr ocedur eExpr essi on

Ti meExpr essi on | Ml meExpr essi on

TypeExpr essi on | MIypeExpr essi on

Miultiplicity Multiplicity

Mul tiplicityRange|MvultiplicityRange

Tabella 1 — Mappatura del tipo “datatyes”

Elements are UML metaclasses constituent of a UML model.

UML elements are structured in packages (foundation, core, behavior, etc). Each

element is mapped to exactly one NSUML interface and one NSUML class.

85

The NSUML class MBaselmpl is the abstract superclass of all element classes {

likewise, al NSUML interfaces are derived from the interface MBase.

al NSUML interfaces are derived from the interface MBase.

UML element NSUML interface NSUML class

Package MPackage MPackagel npl
C ass MOl ass MCl assl npl
Attribute MAttri bute MAt t ri but el npl

6.2.7 Accessing and modifying metaattributes

The Novosoft UML API also contains auxiliary classes which provide event notification

support and undo/redo support.

An application should always refer to an object by its interface { never directly by its

class:

MBase clsO = new Ml asslnmpl (); // ok

MCl ass clsl = new MJ asslnpl (); // also ok

MCl assl mpl cls2 = new MJ asslnpl (); // avoid this!

Element metaclasses contain metaattributes, which can be one of the primitive,

enumeration or datatype classes.

Each metaattribute is mapped to a member variable and should only be accessed by the
corresponding inspector (getAttribute or isAttribute) and mutator (prefix setAttribute)

methods.

86

The default operation are of three kind:

Get — returning the value or a collection of values.

Set — setting the values of a objec type. This doesn’t return.

Is — querying type. This return a boolean that says if an attributes has a property.

MNameOfElement — these are the interfaces that define the methods to access to the

attributes of the model (its name is the same of the NameOfModelElement).

MNameOfModelElementimpl — these are classes that realize interfaces defined
pervious. In these classes there are attributes defining properties of the element of the
model that they represent (i.e. MOper ati onl npl class realize the MOper ati on

interface and it realize all methods defining relevant attributes).

6.2.8 Accessing and modifying metaassociations

Two element metaclasses can be linked to each other with metaassociations. Every
metaassociation has a association role at each end. Depending of the multiplicity of the

role, different methods are used to access the association

Reference roles have a multiplicity of 0..1 or 1. They are accessed similarily to

attributes with getRolename and setRolename methods.

Bag roles are unordered with a multiplicity different from 0..1 and 1. The getRoles
method returns a collection of all the references in the role. Note that this collection is a
copy of the internal collection and can not be changed. With setRoles all the roles can
be set at once. The addRole and removeRoll methods allow adding and removing single

associations.

87

List Roles are ordered with a multiplicity different from 0..1 and 1. In addition to the
methods bag roles offer, they aso define addRole (int, OppositeRole), removeRole
(int), setRole (int, OppositeRole) and getRole (int) methods to allow accessing the roles

at specific positionsin the list.

A link between two objects can be added to removed with a single method call to either

side. The status of the opposite object isimplicitly updated:

MraggedVal ue tv;

Mvbdel El ement ne;

tv new MraggedVal uel npl ;

3

new Mvbdel El errent | npl ;

tv.set Model El enent(ne); // (1) adds an association

me. renoveTaggedVal ue(tv); // (2) renoves it

In this example, line (1) not only modifies the status of tv, but also of me.

When modifying a reference role (with setRole), the object first checks whether a link
aready exists. If this is the case, it tells the existing opposite end to remove the link
with a dl to internalUnrefRole. If the call to setRole is meant to create a link (as
opposed to clearing it by passing null as a parameter), it then tells the (new) opposite

end to create the link with internalRefRole.

When setting a complete bag role or list role the difference between the old set of links
and new set of linksis determined. Any links which are in the old set but not in the new

set are removed { resulting in (possibly) several calls to i nt er nal Unr ef Rol e to

88

update the state at the opposite end of the association. Then any new links are added

(againcaling i nt er nal Ref Rol e to update the opposite end).

6.2.9NSUML reflective API

NSUML offers a orthogona methods for accessing features (metaattributes and
metaassociations) by name. These reflective methods are sower than the direct

methods, but are often easier to use.

Depending on the type feature, not all reflective methods may be valid:

Each implementation class overrides the appropriate reflective methods. If the feature
parameter is known to the class, it reacts to the invocation by setting or getting the
feature. If the feature is unknown, the call is passed to the superclass for further
handling. If, after traversing the hierarchy, no superclass recognized the feature, an

I1legal ArgumentException is throw by MBaselmpl.

89

Rappresentazions nel metamodello fisico UML

ModelElement

nams - Mame
visdnlbty | W Ebibby®ind
Spaciicatian | bookaan

Rappresentazions nel modello di NSUML

"

= <interface == MModelElementlmpl
MAodelElement

protactad Siring _name
1{5 uuuuuuuuuuuu Mrvesibdlitybnd _visibilty;
Boolean _specilication

public atstect Saing gathamsa| |
public abatac) voud setbama(Strirg s); public Strng gethamsail
public veed sebamedShnng s);

public ahstrmct M isibiltyKind gatissisg);
public ahstmat voud sefvisiblita public MYisibilityKird gatissilty]);
public yoid segisiblity)

public absimc bookan mSpacilicationd);
public bl void setSpecilicatiaon), public bookean &ESpecilication]);
public void ssSpacilication]);

<< imferface=>
MBase

public Chject rellectveGelfalued Siirg);

public void rafiectiveSaty'alisa(Siring, Ohjact);
pubdic voud refiectivedddyalus|Siring, Dot
public voud rafiecliveRemoa'alueSinng. Obect);
puldic vord reflectivetelValus] Sinng. nl);

public void eflectiveSat'y alise(Siring, int, Chjact);
public voad rafectivebddyaluaiSiring, ing, Goject]
public voad raflectivaRamovalyalue] Sinng, i, Object)

reflective method valid for feature

oj ect reflectiveGetVal ue(String) all

voi d refl ectiveSetValue(String, Object) all

void refl ectiveAddVval ue(String, Object) bags and lists
void refl ectiveRenoveVal ue(String, bject) bags and lists

90

Obj ect reflectiveGetVal ue(String, int) only lists

void reflectiveSetVal ue(String, int, Object) only lists

void reflectiveAddVal ue(String, int, Object) only lists

void refl ectiveRenoveVval ue(String, int, only lists

bj ect)

6.2.10 Other libreries

OCL
OCL is handled by Frank Finger's OCL compiler, developed at the TU Dresden.

The purpose of the compiler isto generate code out of OCL expressions. The generated
code evaluates the OCL constraint for a model instance, i.e. a program or data base, at
runtime. Constraints formulated during analysis and design can then easily be checked

in the implementation.

While the Java code generator that is being implemented makes certain restrictions to
the OCL constructs that can be used, the other compiler modules are implemented as

close to the OCL gpecification of UML 13 as posshle

91

7. Code generation

In this chapter we will describes the classes added to ArgoUML core for implementing

the code generation feature.

The main work is due to the classs GeneratorState, that implements all the functions for

generating code from the statechart.

7.1. Implementation

Code generation in Argo/UML is supported with a language independent abstract base

class and Java-specific subclasses.

7.1.1 Classe Generator

Class Generator is an abstract base class that is similar to the Visitor design pattern
(Gamma et al., 1995). However, the logic to traverse the design representation is

intermixed with node processing logic.

This class is the abstract super class that defines a code generation framework. It is
basically a depth-first traversal of the UML model that generates strings as it goes. This
framework should probably be redesigned to separate the traversal logic from the
generation logic. See the Vistor design pattern in "Design Patterns’, and the Demeter

project.

Code generation strting from menu options need standard libreries (j avax. swi ng),
meanwhile the selected classifier is returned by the interface

org. argouni . generat or. ui . Tabl eMbdel O assChecks.

92

7.1.2 Classe GeneratorJava

Class GeneratorJava is a Java-specific subclass that generates Java source files. It is

called by ClassGeneratorDial og.

Each of the Java-specific classes implements methods that generate source code for
design elements of a given type. Since the code generation logic is coded in Java, the
only way to customize it is by changing the code or by adding new code generation

preferences.

7.1.3 GeneratorDisplay

Class Gener at or Di spl ay generates simplified Java code to be displayed in the
"Source" tab and in the textual labels of UML class icons and other parts of UML

diagrams.

7.1.4 GeneratorState

| add a new class GeneratorState inherited from GeneratorJava.

Thisclassis caled by many classes.

93

org.argoumluml
Cienerator

ublic Sizing zersrmeOpe i on A persison op
Siring gerarmeAd imbate{ A Avmibule airk
bl Sirinig et nieParae i MPawle pamim
Sming gerennePockage MPacknge pk
Siring generel assifen M lssrlier cls
it gtsd e Wappedd Ve Bl g pod W alis: s je
Fii g peianteAssos B el MLAGsacimhs ak
Sinng gerenteAxsociabionk nd MAssocaiionEnd aek
geznaehulip oy Miialipdeiny mp
Slate mk
rvte ¥ s itiom M Transiton mi
Ao A Aciion mg
erteCimand] M ivand mE
1 e flissaiee Mg m
Seing peseenred aped s | MEXpTeS1 eXpE
Sinng Zererriel pee o | MO onsirainl expr
il g anECSIring ni.
Sinng gemnred e rpeed Siene uny
public Steing geenmel Tassifereli MO Rssifier el
public $inng gemendeEiereotypa M Slenooly pe siic

TR PN

orgargouml fanguage. java. generator
Cienertor)ava

erg.argoumluml. genera ler
Cienerator[Msplay

puhlic salic Cienemtorloa SINGLETON

problic stalie Generinriisplay SINGLETON

pul ke slotic Sring GemerieFake B essilier cb, Sinag uili)

public Siming genenmeblesden M lassifier cls, Siring pahoaome,

preelelie Sipmg perweratid vl MOgsadion og2)
patrlic Strieg peneratel” lissllen MClessiiler ok g

sering packagePath);
puililie Soring gere ke o MO erale opk

public Smng gererakChissiten M lasailier clsi;

2

org. argouml language java, generator
GeneratorState

proflis S Al Caermlorsadie SINGLETON

prablic statie Sirigg CeenerateFiler MC lassifier cls, Siring pathl

peablic =tatic Siring generde Stk bead e MCTassifier cls. Stinng pathnamel;
pualalic S peneratid bl MOgserlion ot

public Simmg peneratel lassifien) MO losilber o b

For storing the main features of the state machine we created these variables:

static MstateMachine sm= null;

static Vector vstates new Vector();
static Vector vevents = new Vector();
static Vector vactions = new Vector();
static Vector vtransitions = new Vector();
static Vector vguards = new Vector();

94

String dirpath = path + cls.getNane() + "_state";
Each vector stores operations, more, we have variable to store the dirpath when we

create the new classes of the structure.

Main operations are:

e String Generate(Cbject 0)

e String CenerateFile(Ml assifier cls, String path)

e String CGenerateFSMFi |l e(MJ assifier cls, String path)

* bool ean manageSt at eMachi ne(MCl assi fier cls)

e String generateHeader (M assifier cls, String path)

e String generateC assifier(Mlassifier cls)

e String generateStateHeader(String path)

e void findSMDat a(String conmonHeader, String path)

e void gener at eCont ext (MCl assifier cls, String

st at eHeader, M assifier srcClassifier, String path)

« void gener at eSt at eAbs(MCl assi fi er cls, String

st at eHeader, String path)

« void gener ateSt at es(M assifi er cls, String

st at eHeader, String path)

Frai parametri gestiti da queste funzioni, cl s rappresenta la classe attuale e il
95

7.1.5 Class properties

Then for classes and classifiers we refersto

i novosaft, uml foundation. core
<< interfoces>
MMadelElement

pubiic absiract boolean isSpecificaton||

plibic abalras] yoid Eﬂiﬂalhﬁ.ahwlfl.mdm Nag}.
pi.Mu: absiraci M‘l.l'-ﬁhil:,lrtlml il bbby

putiic abstract void snt’u':shil.ylh'l"n'mhhyﬁln:l s bl bybaned |
plitsic absirac) Siring geMan]

P abstract vold sethlame]Sinng &),

pLitsic abstracl Colleclicn gelClassife ot 1)

pbllc absirac Collaction galCalaboralions 1)

puisic absiract Collection gelParbSons1{);

public absiract Collection gelBehasiors|

putiic absiract vold set8ahaviosCollaction coliecion);
pusiic abstract veid addBehavion] MEtaletachine |,
b abalrac] yold pemoeeBatiy jon M States Machi).
putilc absiract MESareotyps gesStarealgal);

pubic abstract Collection -gal'l'-ernplatuP:lmzrsH;l
Pt pbeirac] Collaction guiE kmer®

pabie abslrac Collaclian galanmmenis) s

pubfic abstract Dd::uungulﬂmdmg:[l.

pitsic absiracl Coflecli T

putilc absirac Collaction guls-mu'mFlml;}

pubic absiracl Colleclion gelTargesFlows|);

puibie abatracl Ligl gelTemplateFaramelana(],

putiic abstract MTamglataParamater gedTemplataParameteing);
ol absiraci Collection geilPressaniatonsl |

plinic absirac) Coflleclism g5 uppieiDe perlencies|),
public abstract Collection gelConstmaints|;

pubiic absiract Colleclion galTaggedyviaiesy

Pt abeatrac] Coleclin galClienDege ndeniesad|
putdfic abstract MMNamespaoe gethamespacs|);

phitsfic absiract Siring gedTagoedValue! Sling 51

P abstract Mbedel gesbdodel);

publiic absiract boodzan isTempiata();

plitsic abelrac] boodedn isbastapdaliond).

iy

menovosntt.eml. foundation.core
< < fnterface ==
MNamespace

prublic ahsirad Collecion gelOwrsdElements{

prublic afsirmct voed sallmnsdE mmantsColkecion colsction);
public abstract void add wredElement| Mbodel Element |,
prublic sl vosd removeChanedERsmnld MModelElsmand);
mriblic atsiract MMedetEemant loeckup Sting sk

LIL

.E--...-.

this hierarchy.

. novosoft.uml. fowndation.core
< < ghstrace=>

MModelElementinp!

]

i

ru. novesoft.uml. foundation. core
<< frlerfoce ==
MCeneralizable Blement

public absiract boclean sAbstract]|;

pubic absivact void selfbsirachboolaan Bag);

public absiract boolean sLeaf();

public absiract void ulLHI'lb-u\:lun flag);

public abairac boolean =

public absiract void :!IRunIl'buulzm Sagk

pubdic abslrac Collection getBpeciakzalionsll;

public absiract vold mlEpﬁdeﬁ(Eﬂarlw

public absiract void add® i

public absiracd void remgy e Spscmlizaton| M Ganerafi galion |

piblic abslract Collection petanaradzations(];

public absiract void ::IG:mdmmﬁEnllnclnn collecian);
it abslrac void add i zaliony

public atsiract vold rﬂ'qnuahmdlrm"ﬂtm-ﬂmllzahm}

public absiract List getChidren):

pubdic absiract List gelParental)

Ny

e novasoft.uml. foundation.core
MM amespacelimpl

L

L pevosa fLuml, foundation.core
R [L T e

ru.novoscftuml. foundation.core
<<interfoce= >
MClassifier

N Modde IEiententfmpf

pubdic absiract Collection getCrmpdElemaenis));

e novosaft.uml. foundation.core

pubdic obsira void selDwredEl (Colbection colk

pubdic absirzed MMadelE kment bofun| Sadng a)

pbic ahsiract vold addtvansdElnmsnliN cdsElamsniy
public abstract void removeCwredElemert M odelElement);

el WS == ==+

M C lassifierimpl

96

7.1.6 State machine properties

For state machines we refers to next class diagram.

ne vt uml . Founclation . core
B -
MMddelElewe

pddie abvelvg] Lewd aan o B feibond |

piddic chiadiard s ol e Be b on) bindsar g |

pulsie abritimc] Vs dabiHind get'iridelly]]

pubbz ahstract vod asl Vabdt Y pbek s nrorsis ks

pubdC abeuraal Swing g8 amess

pubhc mhsirac soid eel Haes | Sy el

Pl b an] Cobel o 8 s s e ATk S

pubc bt Coliechon getadnbrraom Hi

Pkt obetiae) Coleohod g8 Poa o)

puthc pirlc Collech on ge Bshorecmn] |

ik ahearRe] sod HMWWWM:
pubic woed mcl i

|:-I.HI: atrayac] wowd WWWH

Fubhs sheirac] b Srespe getPerenl s |:

nﬂtmm-imqlrrﬂuw"rmmﬂ_c

g8

ks
n.u:awml:w-ciuqll:mm.m

nﬂnﬁ-ulmﬂchﬂmqeﬂmwlmum
pabdc = 1l
PH:.Mrl.r]DﬁrlmgllTl hulql

[ETET T'
pH:MlmHTmﬂlrg.TumHq_
pulsc ot Cioll quiPy
uu:qt-mmmauqumwu-mm;

puldie alvidian] How o Ko P

pibdic phidran Crlicion g @l sgpeslvalasa| |

pubshe gbvidvmed Cridwnchor o o K01 sad Dwpmanbers gsif .

pubdic ahdinci bl Earmsa s T g

pubshc alridinc] Sking gu Im.fq'ﬂ'ﬂl’hruli

pidlic atisdran Wekss geibbrdal]
n.H:ll:!I.rldbn.lllnuTm;h'h_‘l.

Fidlic LLi]

£

E---- sl

r-rwsolt.uml hehmvior siake_ mochines
R
MSime lachine

piblic obedvany Coleg i ge FEubmachine Sulesd)

piiblr abvirani vou] g Bfen CAT L e ol B ool ion |
public shatraci void md SubmmchizeS s S sbrachrs Sk |
pilbl abedraon vokd MMMWHM

publc abvsirac sred o M ey

puble abvdracl vk WUM%MWMu

piibp abeiypol Coll priar guiTeans Bona |;
public sl vorl psl oofldEn
|:-|.t-ll: abrdel !’\-:H mumr.rrnwm rﬂ#ﬁm

|:-|.IJ-II: abviraci -u:lld mﬂﬂmrlnw eornetin
pibie abradvied vomd psarel U o TR

public sbnirci W Swmis gl fopi)

Fashlic abusiract wnid sl Tophis L

pasbs adrilvar] vosd -m:dH-Ea-Tu#.Huu vl B,
paihilic ahidract wrid mered L rs 1R Top Ui aiks ety

pasbdic abiraci W dod el berend e iaisd |
pubbe dbridiied wosd sl Coidn ol B bl baved
padblic sbadrecd wrikd imeemed B Mmlmm
pudds advilyeed soud maved Ui EiRabd Slarpan] el gskay Ty

b el Fu i o, oo
< < afirpers =
LT B T

na.nowvas of b uml bebavior. state machines
MStteMachinelmpl

97

In Gener at or St at e | add some code for finding the statemachines associated to a

class:

Col I ection behaviors = cls. getBehaviors();
Iterator it = behaviors.iterator();

sm= null;
while (it.hasNext())
{
Cbj ect behavior = it.next();
if (behavior instanceof MstateMachine)
{
sm = (Mst at eMachi ne) behavi or;
br eak;
}
}

if (sminstanceof MstatelMachi ne)
trovataSM = true;

So we can load state machine’s components and generate the appropriate code.

All attributes of classifier is refferred by MMUItil class.

For the states’ properties we refer to Mstate class.

98

ru ey s L umml oumlarien. come
<< e = =
MMl Ele meni

af.lb.

rrwnsaltuml behavionstate_machines

= frpbafaaee
MFtare Vervex

mmmmwmﬁmu

1 Colacs

pl.lJ-'-l-: ans o0l Wik ad dinoorsng | MT rana on srnweison
reres o ey B Tron

A — ey b i radony
puhir. saimcd vold

i a=nired v iskenailinrsl rmizars fonl
Py 3 ol Coilehon

b il Wied v s ol

bl azaimd wild ad ks PiTesrabon arrnred k|

P e e ol S rarep WA Ticnradtion ideamiebea

padi as mmlmpﬁh@wmm wiang;
pl.ﬂib:mi'\ﬂil'i-htﬂhrﬂ kg ang W Triraims imlsdsiehon];
b Az b MCompoeieSinis gel Cond s

P b e a8 s e PG S L Froorpon b
pubi. asainc vl I P T S
pudsie s Kind v mﬁgz g |k 'a.ulu|.

iy s L el e gone
o g =
MMl e vt sl

ni.mvesa L um | behavion state_mechines
T T P
LSt Verseafampl

s

i s, Uil Bty o stane_enaehines
= e fiee ==
MiSume

bl ibsbact WSl in gul Dedictrabd)

bl babepes e seCloAed kil viMAcknn maokaa |

o bl bt i W el By Dhesi et A Bl et rraichon]

yri bl mbadbeeen i indmeal By Tlodogd py LA ion maelon):
i bl bl Gl ppalle e Trimrida | L

i b b i uhim.u'rmqrm rrlecion];
ra bl rorw I Tt e i b el
bl pbedecn eak] meres s inmal Trered e B Transddas |

oo bl il B b T v s I T mid T |

i b mbadews i a8 i L] et i
i oy b e bl b e b o b B p e et
pablc sbaiect s mervoss Delerasiel penl VE vent mermaly
i by nbec i i vl By Debevone £ s end |VEE s el
i b nbeioncs ek ndereall el s TebsratieR send (VR veni |
v bl pbdnc MRS Bt o IHPHHIHMIHI_-.

prabic roid palStaiett
pth-:- b0 wi bl HHMMKH‘#‘-‘HMI
pabic sbaira=t o erral U= 1B0S el ar bns U slsliinchera |
i bl b ngc Colisation grClodadiemd e ki
pa b nbalenct vkl sl s inSiaks Coflecion collacmm|
frd b bt] kLl B s IAC ISPt Sl |
pabic pbakwct vl mroeel b eris ks ML e fericSnie);

pabhe mbabst bboion guilas):

ol b s il 5 IS | LR oy e

pabic obakact vzl mieealdell yloas B fsssmn rmacbon

i bl b v MEHHW il
b pbabect Wildrn gl Eabyi))

i bl pbdnacn woid SaiEnd BOA) ot [

o bl i il i sEay] bl on s ies)!
ol bl bt et inberend inratR s By bl Aedion rusclony,

MState top = sm get Top();

Col | ection states

i s L | e havdor siate_mpchimes
< aharsme e =

MfSrcasg Tl

Iterator itstate = states.iterator();
while (itstate. hasNext())

{

(MConposi teState)top). get Subvertices();

99

oject obj = itstate.next();
if (obj instanceof Mstate)
{
/1 Menorizzo gli stati
vst at es. addEl enent ((VSt at €) obj) ;
}
}
Coll ection trans = smgetTransitions();
Iterator ittrans = trans.iterator();
while (ittrans. hasNext())
{

[/ Menorizzo | e transi zi oni
MIransition t = (Mlransition)ittrans. next();
vtransitions. addEl enent (t);

[/ Menorizzo gli eventi/trigger
MEvent e = t.getTrigger();
vevents.addElement(e);
//NMemorizzo le azioni/effects
MAction a = t.getEffect();
vactions.addElement(a);
//Memorizzo le guardie

MGuard g = t.getGuard();

quards.addElement(g);
}

7.2. Generated code rendering

A subclass of JPanel that can act as a tab in the DetailsPane or MultiEditorPane.
When the tab is double-clicked, this JPanel will generate a separate window of the same

size and with the same contents. Thisis amost like "tearing off" atab.

Before viewing code we must select a class. Thisis done by TabModelTarget.

100

org.argouml.ui
TabSpawnahle

public TebSpamna el @

public TabSmmmabla Siong tile):

phildic Tebegmamipaldad Siring gitle, boadedi ta=ir);
pubic CHject chane| §

philHie Sing perTila)
pubtlic vied setTile) SEmg 1c

puiltlic: Tabspammnalde sgaii i

Pl

org.argouml.ug
TabText

pasltlie TabTexnSIning (k25

pabin: TabTexliSiring ke, boodmn with Tocdbart
praleleg vednl et Tarpet] Tyt 11

paabie (W et perTarzey 1:

mrofecied vond pamse | exi Siring 51;

2R,

orgargoumluml. ui

TabSrcState

paabic TabTexl{Sirng 1%k

pralthe Tab Tenni Siving ek, bosdizan aqth Toodh e
pabrtir vodd sed Tarpen (et 11

public Chject peiTargey)

pruiecied voad pameeText Siring s1;

7.2.1 Classe TabModelTarget

package org.argoum . unl . ui;

public interface TabModelTarget {
public void setTarget (Qhject 0);
public Cbject getTarget();

org.argouml uml.uwi
TabMaodeiTarget

public vl serTanges Clbgect o
pohlic Ot ged el

Pl feinil gefreshi)

[l Dovkean shuoiada: Fngdshodi' 1

101

public void refresh();
publ i ¢ bool ean shoul dBeEnabl ed();

}

This interface permits to select by mouse a class to traduce and then to obtain the code

generated as areturned value.

So | start creating a new class called TabSrcState in this manner:

7.2.2 Classe TabText

The inherited class TabText permits to generate code from a selected object (_target)

to astring (_text) that must be shown by tab strips.

Is the genText method that must be redefined to make a particular code generation code

generation.

This class contains the code generated from the class Generator.

7.2.3 Classe TabSrcState

Adding a tab in the Details Panel
| created my TabSrcState class in org.argouml.uml.ui by copying from another

TabYYY .java Then | registered my TabSrcState in org/argouml/argo.ini by adding a

linelike:

details: TabSrcState

Immediate rendering of generated code needs GEF library. The Editor classisthe forst
to be called: it allows to select method for processing events from ArgoUML’s user.
These events are propagate until Modes class that permits to find the code out of the

libraries.

102

Referred code is in org.argouml.uml.diagram.ui. TabDiagram, in selectionCahnged()

method.

protected String genText ()
{
Cbj ect nodel hj ect = _target;
if (_target instanceof Fi gNode)
nmodel Obj ect = ((Fi gNode) target). get Ower();
if (_target instanceof FigEdge)
nmodel Cbj ect = ((Fi gedge) target). get Ower ();
if (nodel Gbject == null) return null;
return Generator State. Gener at e(nodel Obj ect) ;

: A Source State r) i iz]
| 4 Tobo tem rﬁﬁmﬁm f’#ﬁm&wﬁm | AStie | A Source |

| Urnl 4.3 v|

.

|//CODICE DELLA CLASSE...Tornello

Eclass Tornello
M i

Af Attributes

S4 Associations

1]

Rendering fo generated code is created by calling GEF libraries: Editor class and the

Modes class.

In particoular we cal the class TabD agram By the method
sel ecti onChanged() , we pass the selected fig to set Det ai | Target (), in

Pr oj ect Br owser class.

public cl ass TabDi agram ext ends TabSpawnabl e

{

public void sel ecti onChanged(G aphSel ecti onEvent gse)

{

Vector sels = gse.getSel ections();
Proj ect Browser pb = ProjectBrowser. Thel nst ance;
if (sels.size() == 1)

pb. set Detai | sTarget (sel s. el emrent At (0));

103

el se
pb. set Det ai | sTarget (nul l);

The automatic load of the tabstrip id done by

org. argounm . util. Confi gLoader.

7.3. Show generate code in “Source state” tab

strip
We show you how code generated is shown in the “Source state” tab strip.
User clicks on Source state tab, then we have a call to setTarget(Object):

public void setTarget((hject t) {
/lchiamata a setTarget di TabText (il padre)
super. setTarget(t);

Then from TabText we have:

public void setTarget((hject t) {

_target =t;

_parseChanges = fal se;

if (_target == null) {
_text.set Enabl ed(fal se);
_text.setText (" Nothing selected");
_shoul dBeEnabl ed = fal se;

}

el se {
_text.setEnabl ed(true);
String generatedText = genText();

Then we return in TabSrcState calling generateState:

104

protected String genText() {
bj ect nodel bj ect = _target;
if (_target instanceof Fi gNode)
nodel Chj ect = ((Fi gNode) target).get Omer();
if (_target instanceof Fi gEdge)
nodel Chj ect = ((Fi gEdge) target). get Omer();
if (nmodel Gbject == null) return null

return GeneratorState.Generate (modelObject)

}

This return is a call to GenerateState, class in which | create the code for ptate

machine. This return a string to TabSrcstate.

public static String Generate((hject 0) {
return SINGLETON. generate(0);

}
So in TabSrcState we return a string to TabText, which is calling, and it can show the

generated text.

/I public class TabSrcState
protected String genText() {

return GeneratorState.Generate(modelObject);

//public class TabText
public void setTarget(Object t) {

String generatedText = genText();

iT (generatedText '= null) {
_text.setText(generatedText);

105

tahlHapram: tahTexn TabhTexi tabssaurcesiaie: Benerainrstane:
TuhDisgram TahSowrcesiwle CeneratnrSinte
1
-
3
..—
3
-
4
-
5 =
4 o
| o
o

7.4. New menu: Generation statecharts

The new feature of code generation is added to ArgoUML by new menu called

Generation statecharts, under the existing Generation menu.

7.4.1 Class ProjectBrowser

Class ProjectBrowser
This class contains all declarations and definition of alla menus in the interface. One

particoular menu is Generation(with two options. Generate selected classes and

Generate All Classes).
This menu has three options:

106

» Generate selected classes — for generating java code from the selected class
* Generate All classes — for generatin java code from alla classes in the diagram

* Generate statechart — for generating java code from the statechart regarding the

selected class

Seneration | Critique 00 Help

Generate Selected Classes .{r E s

i Senerate All Classes F?

‘Benera Statechart

Genara Statechart

Menu creation consists in creating an javax.swing.JMenu element to which add options

of Action class.

JMenu generate =
(JMenu) _nenuBar . add(new Menu(nenulLocal i ze(" Generation")));
set Mhenoni c(generate, "CGenerate",’ G);
gener at e. add(Act i onGener at eOne. SI NGLETON) ;
JMenultem genAllltem =
gener at e. add(Acti onGener at eAl | . SI NGLETON) ;
set Accel erator(genAllltem F7);

// Genera file con il codice
JMenul tem genSt at echarts =
gener ate. add(Acti ons. GenerateStateFil e);

_menuBar variable contains the menu. New menu genSt at echarts calls the

operation of the Act i on class.

107

AbstractAction orgargouml i
Actions

alalic Yook _allActions = e sk LN

,/ ruhlic staiic LML Action Prini = new Aciioninmdi ¢
> | Tk = ey J
I vl U B v
2

public sttic UMLAcion MavConfig = new AdionhbvComlis ©
: LM Firedl = men ActivnFimk)

UML Action

2xil ih = mew it

b vl L, I [I
G:_--------(::_‘; Luhli - UM s RapidButiom: = new

At S o B B oniag |

4 & il - o — -
hocditini hasheon Crestebiultiple = sew Act

W T = W A
penlhecizais = new
Cipenlaals = new A
ChmnCmties = g Selion gl rilic |
FlnToddo = maew AciionFlarTolin),
e Tolidsem = new Actonbew Tolloltem;
Rekolia = ne Acteq R
EmadBExpem = new Acl
MoreIngs = new Aclim

pablic vold actinnPeriomiod ActionEvent <1

puhlic sttle UMLACID GeaerseSimeFile = new AcionlnsimeFis)|;
public stalic UMLACtion Staeinf = new Actionszatelnfis i

pubilic stmic UMLAIon Srooee = mew Aciion Snomeeq i
public suiic UMLAction AbedAnzel IML = seme Action S bom Srzel B

7.4.2 Class UMLAction

These classes are important for performing action in the menu Generate.

7.4.3 Class Actions

This class contains alla declarations of alla actions invocated by methods and their

management by actionPerformed() methods.

Actions are defined as a extensions of UMLAction class.

| add the code for new actions, about generating code from state machines:

public static UMLAction CenerateStateFile =

new
ActionGenStateFile();

108

public static UMLActi on
Statelnfo = new
ActionStatelnfo();

7.4.4 Class ActionGenStateFile

| structured my classes in the same way as the menu Generate Selected classes calls the

classesGenerationDial og,.

Selecting the new menu, a dialog windonw opens and here we findoptions implemented

by Cl assSt at eGener ati onDi al og class. This class is declared under Actions

class and it implements code generation.

Cdlingthecl assSt at eGener ati onDi al og() class, we pass the manegement of

code generation to this dialog window.

cl ass ActionGenStateFile extends UVMLActi on

{

public ActionGenStateFile()

{
}

super("Genera File con il codice", NO | CON);

public void actionPerfornmed

{

(java. awt . event . Acti onEvent acti onEvent)

Proj ect Browser pb = ProjectBrowser. Thel nst ance;
Editor ce =
org.tigris.gef.base. d obal s.curEditor();
Vector sels = ce. get Sel ecti onManager (). getFigs();
java.util.Enunmeration enum = sels. el enents();
Vector classes = new Vector();
whi | e (enum hasMor eEl enent s())
{
Fig f = (Fig) enum next El enent () ;
bj ect owner = f.get Ower();
if (!(owner instanceof M ass) &&
I (owner instanceof Mnterface))
conti nue;
MCl assifier cls = (MJ assifier) owner;
String name = cls.getNane();
if (name==null || nane.length()==0)
conti nue;

109

cl asses. addEl enent (cl s) ;

}
Cl assSt ateGenerati onDi al og cgd =

new Cl assSt at eGener ati onDi al og(cl asses);

cgd. show() ;
}
publ i ¢ bool ean shoul dBeEnabl ed()
{
return true;
}

}
7.4.5 Class ClassStateGenerationDialog

As all the menu for generating code, the mine is the same: a dialog window is opened

and the user have to elect the classes to implement.

110

wff Generate Classes

Generate Classes .

Tarmella D

Outpt Directory:

|GZ'4 |"| | Bromwwese. ., |

Dcnmpile genersted source | Cancel | | Generate |

7.4.6 Show the call stack from the menu

So the call stack from menu generates a file with the source code shown in

TabSr cSt at e.

From the menu Generation statecharts we call Act i on class;

class ActionCGenStateFile extends UMLActi on

{

public void actionPerfornmed(ae)

{

Vector sels =
ce. get Sel ecti onManager (). get Fi gs();
Cl assSt at eGenerationDi al og cgd =
new Cl assSt at eGener ati onDi al og(cl asses);
cgd. show) ;

1. Then adialog window is opened

111

public class C assGenerationD al og
{
protected JButton _generateButton =
new JButton("Cenerate");

public O assGenerationD al og(Vector nodes);

public void actionPerformed(Acti onEvent e)

{

if (e.getSource() == _generateButton)
{
String path = ((String) _dir. get Mdel ()
.getSel ectedlten()).trin();
Proj ect Browser pb =
Pr oj ect Browser. Thel nst ance;
Project p = pb.getProject();
p. get Generati onPrefs().setQutputDir(path);

Vector nodes = _tabl eModel . get Checked();
int size = nodes. size();
String[] conpil eCrd=new String[size+l];
for (int i =0; i <size; i++)
{

(bj ect node = nodes. el enent At (i);

if (node instanceof M assifier)

conpi |l eCd[i +1] =
Cenerat or St at e. Generat eFi | e(
(MCl assifier) node, path);

2. then, after click the generate button, we call the operation Gener at eFi | e in

Cener at eSt at e class:

String GenerateFSMFil e(MJ assifier cls, String path)
{
String nonefile cls.getNane()+ ".java";
String pat hnane path + nonefil e;
String dirpath = path +cls.getNane() +" _state";
trovat aSM = manageSt at eMachi ne (cls);
String comonHeader =
SI NGLETON. gener at eSt at eHeader (cl s) ;
String srcClassifier =
SI NGLETON. generat eCl assifier(cls);
if (trovataSM

{

File cartella = new Fil e(dirpath);
cartella.nkdir();
String nonedir=

112

cartel | a. get Pat h() +FI LE_SEPARATOR,
String stateHeader =
SI NGLETON. gener at eSt at eHeader (nonedir) ;
SI NGLETON. fi ndSMDat a(commonHeader, nonedir);
SI NGLETON. gener at eCont ext
(cls, stateHeader, srcC assifier, nonedir);
SI NGLETON. gener at eSt at eAbs
(cls, stateHeader, nonedir);
SI NGLETON. gener at eSt at es
(cls, stateHeader, nonedir);
}
File f = new Fil e(pat hnane) ;
Buf feredWiter fos = null;

try

{
fos = new BufferedWiter(new FileWiter(f));
fos.wite(comonHeader);
fos.wite(srcClassifier);

}

catch (I Oexception exp) { }

finally

{
try { if (fos !'=null) fos.close(); }
catch (1 OException exp)
{

System out . printl n("FAILED: " +f.getPath());
}

Systemout.printlin("-end generating all file -");
return pathnane;

3. The tWE) functions, gener at eSt at eHeader and gener at eCl assi fi er,
creates the source code starting from the class of the model, according to the
statechart defined. Initialy, the state ,achine is read by the
manageSt at eMachi ne operation, that store in vector variables the main

features of the state machine, and finaly it return abooleant r ovat aSM Then

we call operation that creates the files requested by State pattern:

* generat eCont ext - generates the class “context”

e generat eSt at eAbs - generate the class “abstract state”

* generat eSt at es - generate the classes “concrete states”

113

4

ARV,

P

Al

114

8. Conclusions

This work add to ArgoUML the feature of code generation starting from statechart in
the model. Code generated automatically control class behaviour according to the

statechart.
This statechart have to be defined in UML and it have to have no composite states.

The work is totally scalable and reusable: both the structures of code generated and the

code added to ArgoUML kernel. This last structure is modular.

From this work is possible generate a new release of ArgpUML or a plug-in with only

the new features.

115

9. Thanks

| would thanks alla member of dev-argoum! mailing list,about developing ArgoUML,
that helped me much to learn the kernel architecture and the main mechanisms for
generating realeases and plug-ins.l would thaks expecially ir. J.F.J. Branderhorst that

helped me to developing a plug-in with my new feature.

116

117

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

[10]

Armstrong Eric, How to implement state-dependent behavior - Doing the State

pattern in Java (http.//www.javaworld.com)

De Lamotte Florent, Présentation d'ArgoUML,

(http://n00n.free.fr/argo presentation/Presentation. html)

Design Patternsin Java - Reference and Example Site

(http://'www. fluffycat.com/java/patterns. html)

Domenici Andrea, Dispensa di Ingegneria del Sofiware

Domenici Andrea, Frosini Graziano, Introduzione alla programmazione ed

elementi di strutture dati con il linguaggio C++, FrancoAngeli, 1996

Gamma Eric, Helm Richard, Johnson Ralph, and Vlissides John, Design

Patterns, Addison-Wesley, 1995

GEF - The Java Graph Editing Framework (http.://gef.tigris.org)

Gomaa Hassan, Designing concurrent, distributed, and real-time applications

with UML, Addison-Wesley 2000

Holub Allen, OODesign Workshop - A UML Reference

(http://www.holub.com/cat/oo_design workshop.html)

Lindholm Tim, Yellin Frank. The Java Virtual Machine specification,

Addison-Wesley, 1999 (http.//java.sun.com/docs/books/vmspec)

118

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Martin Robert C., UML Tutorial: Finite State Machines, Engineering

Notebook Column, C++ Report, June 98.

NSUML - The Novosoft UML API (http.// nsuml.sourceforge.net)

Object Management Group, OMG Unified Modeling Language Specification

v.1.3 ev.14 (http.//www.omg.org)

Ramirez Algjandro, Vanpeperstraete Philippe, Rueckert Andreas, Odutola
Kunle e Bennett Jeremy, ArgoUML User Manual - A tutorial and reference

description of ArgoUML, (http.//argouml.tigris.org)

Robbins Jason, Redmiles David, Tolke Linus e altri, The ArgoUML case tool

Project (http.//argouml.tigris.org)

Skinner Martin, Enhancing an Open Source UML Editor by Context-Based

Constraints for Components, University of Berlin, Thesis, December 2001

Sun Microsystems, Forte for Java CE Guide and Tutorial, August 2001

(http://www.sun.com/forte/ffj/overview)

Tarquini Massimiliano, Java mattone dopo mattone (http://www.java-net.tv)

TogetherSoft, Inc., Practical UML - A Hands-On Introduction for Developers

Copyright © 2001 (http.//www.toghetersofi.com)

Tolke Linus, Klink Markus, Cookbook for developers of ArgoUML

(http://7argouml.tigris.org)

119

